References and Notes
1a
Trost BM.
Acc. Chem. Res.
2002,
35:
695
1b
Li
C.-J.
Trost BM.
Proc. Natl. Acad. Sci.
U.S.A.
2008,
105:
13197
1c
Anastas PT.
Kirchhoff MM.
Acc.
Chem. Res.
2002,
35:
686
2a
Trost BM.
Science
1991,
254:
1471
2b
Anastas PT.
Warner JC.
Green Chemistry: Theory and Practice
Oxford
University Press;
Oxford:
1998.
2c
Jenck JF.
Agterberg F.
Droescher MJ.
Green Chem.
2004,
6:
544
3
Corey EJ.
Cheng XM.
The
Logic of Chemical Synthesis
John Wiley and Sons;
New
York:
1989.
4a
Godula K.
Sames D.
Science
2006,
312:
67
4b
Bergman RG.
Nature (London)
2007,
446:
391
4c
Jia C.
Kitamura T.
Fujiwara Y.
Acc.
Chem. Res.
2001,
34:
633
4d
Ritleng V.
Sirlin C.
Pfeffer M.
Chem.
Rev.
2002,
102:
1731
4e
Yu J.-Q.
Giri R.
Chen X.
Org. Biomol.
Chem.
2006,
4:
4041
4f
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
4g
Herrerias CI.
Yao X.
Li Z.
Li C.-J.
Chem. Rev.
2007,
107:
2546
4h
Seregin IV.
Gevorgyan V.
Chem.
Soc. Rev.
2007,
36:
1173
4i
Giri R.
Shi B.-F.
Engle KM.
Maugel N.
Yu J.-Q.
Chem.
Soc. Rev.
2009,
38:
3242
4j
Ackermann L.
Pure.
Appl. Chem.
2010,
82:
1403
Selected examples of CDC reaction,
see:
5a
Li C.-J.
Acc. Chem.
Res.
2009,
42:
335
5b
Zhao L.
Baslé O.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2009,
106:
4106
5c
Deng G.
Li C.-J.
Org. Lett.
2009,
11:
1171
5d
Zhao L.
Li C.-J.
Angew. Chem. Int. Ed.
2008,
47:
7075
5e
Deng G.
Zhao L.
Li C.-J.
Angew.
Chem. Int. Ed.
2008,
47:
6278
5f
Li Z.
Cao L.
Li C.-J.
Angew.
Chem. Int. Ed.
2007,
46:
6505
5g
Zhang Y.
Li C.-J.
Eur. J. Org. Chem.
2007,
4654
5h
Li Z.
Bohle DS.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2006,
103:
8928
5i
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2006,
128:
56
5j
Li Z.
Li C.-J.
Eur. J. Org. Chem.
2005,
3173
5k
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
6968
5l
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
3672
5m
Li Z.
Li C.-J.
Org. Lett.
2004,
6:
4997
5n
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2004,
126:
11810
5o
Baslé O.
Li C.-J.
Green Chem.
2007,
9:
1047
5p
Baslé O.
Li C.-J.
Chem. Commun.
2009,
4124
For examples, see:
6a
Sud A.
Sureshkumar D.
Klussmann M.
Chem.
Commun.
2009,
3169
6b
Shen Y.
Li M.
Wang S.
Zhan T.
Tan Z.
Guo C.-C.
Chem. Commun.
2009,
953
6c
Jin J.
Li Y.
Wang Z.-J.
Qian W.-X.
Bao W.-L.
Eur. J.
Org. Chem.
2010,
1235
6d
Maheswari CU.
Kumar GS.
Venkateshwar M.
Kumar RA.
Kantam ML.
Reddy KR.
Adv.
Synth. Catal.
2010,
352:
341
6e
Cai G.
Fu Y.
Li Y.
Wan X.
Shi Z.
J. Am. Chem.
Soc.
2007,
129:
7666
6f
Stuart DR.
Fagnou K.
Science
2007,
316:
1172
6g
Dwight TA.
Rue NR.
Charyk D.
Josselyn R.
DeBoef B.
Org. Lett.
2007,
9:
3137
6h
Hull KL.
Sanford MS.
J.
Am. Chem. Soc.
2007,
129:
11904
6i
Xia J.-B.
You S.-L.
Organometallics
2007,
26:
4869
6j
Yu A.
Gu Z.
Chen D.
He W.
Tan P.
Xiang J.
Catal.
Commun.
2009,
11:
162
6k
Li Y.-Z.
Li B.-J.
Lu X.-Y.
Lin S.
Shi Z.-J.
Angew. Chem.
Int. Ed.
2009,
48:
3817
6l
Anaya de Parrodi C.
Walsh PJ.
Angew.
Chem. Int. Ed.
2009,
48:
4679
6m
Li B.-J.
Tian S.-L.
Fang Z.
Shi
Z.-J.
Angew. Chem. Int. Ed.
2008,
47:
1115
6n
Catino AJ.
Nichols JM.
Nettles BJ.
Doyle MP.
J.
Am. Chem. Soc.
2006,
128:
5648
6o
Murahashi S.-I.
Nakae T.
Terai H.
Komiya N.
J. Am. Chem. Soc.
2008,
130:
11005
6p
Tsang AS.-K.
Todd MH.
Tetrahedron
Lett.
2009,
50:
1199
6q
Condie AG.
González-Gómez JC.
Stephenson CRJ.
J.
Am. Chem. Soc.
2010,
132:
1464
For examples, see:
7a
Latham AH.
Williams ME.
Acc. Chem.
Res.
2008,
41:
411
7b
Laurent S.
Forge D.
Port M.
Roch A.
Robic C.
Vander Elst L.
Muller RN.
Chem.
Rev.
2008,
108:
2064
7c
Sun S.
Zeng H.
J. Am. Chem. Soc.
2002,
124:
8204
For selected reviews on Fe catalysis, see:
7d
Bolm C.
Legros J.
Le Paih J.
Zani L.
Chem. Rev.
2004,
104:
6217
7e
Sarhan AAO.
Bolm C.
Chem.
Soc. Rev.
2009,
38:
2730
7f
Morris RH.
Chem. Soc. Rev.
2009,
38:
2282
7g
Cheng ZY.
Li YZ.
Chem. Rev.
2007,
107:
748
7h
Sherry BD.
Fürstner A.
Acc. Chem.
Res.
2008,
41:
1500
8
Guin D.
Baruwati B.
Manorama SV.
Org.
Lett.
2007,
9:
1419
For examples, see:
9a
Polshettiwar V.
Baruwati B.
Varma RS.
Chem.
Commun.
2009,
1837
9b
Luo S.
Zheng X.
Xu H.
Mi X.
Zhang L.
Cheng J.-P.
Adv. Synth.
Catal.
2007,
349:
2431
9c
Polshettiwar V.
Baruwati B.
Varma RS.
Green
Chem.
2009,
11:
127
9d
Kotani M.
Koike T.
Yamaguchi K.
Mizuno N.
Green Chem.
2006,
8:
735
9e
Zhang D.-H.
Li G.-D.
Lia J.-X.
Chen J.-S.
Chem. Commun.
2008,
3414
9f
Kawamura M.
Sato K.
Chem. Commun.
2006,
4718
9g
Kawamura M.
Sato K.
Chem. Commun.
2007,
3404
9h
Hu A.
Yee GT.
Lin W.
J.
Am. Chem. Soc.
2005,
127:
12486
9i
Chouhan G.
Wang D.
Alper H.
Chem. Commun.
2007,
4809
9j
Abu-Reziq R.
Wang D.
Post M.
Alper H.
Adv. Synth. Catal.
2007,
349:
2145
9k
Polshettiwar V.
Varma RS.
Chem. Eur. J.
2009,
15:
1582
9l
Ge J.
Zhang Q.
Zhang T.
Yin Y.
Angew. Chem. Int. Ed.
2008,
47:
8924
10
Zeng T.
Chen W.-W.
Cirtiu CM.
Moores A.
Song G.
Li C.-J.
Green Chem.
2010,
12:
570
11a
Wu X.-J.
Jiang R.
Wu B.
Su X.-M.
Xu X.-P.
Ji
S.-J.
Adv. Synth. Catal.
2009,
351:
3150
11b
Sreedhar B.
Kumar AS.
Reddy PS.
Tetrahedron
Lett.
2010,
51:
1891
12a
Buchwald SL.
Bolm C.
Angew.
Chem. Int. Ed.
2009,
48:
5586
12b
Larsson P.-F.
Correa A.
Carril M.
Norrby P.-O.
Bolm C.
Angew.
Chem. Int. Ed.
2009,
48:
5691
13 The leaching of Fe residue in the
resulting crude material was detected by Thermo Jarrell Ash ICP-AES.
No obvious Fe leaching was detected (below detecting limit).
14
Evans DA.
Seidel D.
Rueping M.
Lam HW.
Shaw
JT.
Downey CW.
J.
Am. Chem. Soc.
2003,
125:
12692
15
Experimental Procedure
Fe3O4 [<50
nm particle size (TEM)], Fe2O3 (<50
nm particle size) and other reagents were purchased from Sigma-Aldrich and
used without further purification. 2-Aryl-1,2,3,4-tetrahydroisoquinolines
were prepared by the literature method.¹6 To
a reaction tube charged with a magnetic stir bar and Fe3O4 nanoparticles
(0.02 mmol, 10 mol%), 1,2,3,4-tetrahydroisoquinoline derivatives
(0.2 mmol), and nitroalkane or acetone (0.5 mL) were added. Then
the tube was filled up with molecular oxygen and stoppered. The reaction
mixture was stirred at 100 ˚C (temperature of
oil bath) for 24 h. The Fe3O4 nanoparticles
were adsorbed on the magnetic stirring bar when the stirring was
stopped. After cooled to r.t., the reaction solution was filtered
through Celite in a pipette eluting with EtOAc. The volatile was removed
in vacuo, and the residue was purified by column chromatography
on silica gel (eluent: hexane-EtOAc = 5:1) to
give the corresponding product. Fe3O4 nanoparticles
were washed with EtOAc, air-dried, and used directly for the next round
of reaction without further purification.
2-(3-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1e)
White
solid. Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.7). ¹H
NMR (400 MHz): δ = 7.26-7.15 (m, 5 H),
6.62-6.60 (m, 1 H), 6.53-6.52 (m, 1 H), 6.41-6.39
(m, 1 H), 4.42 (s, 2 H), 3.82 (s, 3 H), 3.57 (t, J = 5.6
Hz, 2 H), 2.99 (t, J = 6.0
Hz, 2 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
151.9. 134.9, 134.5, 130.0, 128.5, 126.6, 126.4, 126.1, 108.0, 103.3,
101.5, 55.2, 50.6, 46.4, 29.2 ppm. HRMS (APCI): m/z calcd
for C16H18NO [M + 1]+: 240.1383;
found: 240.1381.
2-(3-Methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline
(3i)
Isolated by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4).
Light yellow oil. ¹H NMR (400 MHz): δ = 7.28-7.17
(m, 4 H), 7.14-7.12 (m, 1 H), 6.60 (dd, J = 8.4,
2.4 Hz, 1 H), 6.54 (m, 1 H), 6.42 (dd, J = 8.0,
2.0 Hz, 1 H), 5.54 (dd, J = 7.2,
6.8 Hz, 1 H), 4.87 (dd, J = 12.0,
7.2 Hz, 1 H), 4.55 (dd, J = 11.6,
6.8 Hz, 1 H), 3.80 (s, 3 H), 3.66-3.58 (m, 2 H), 3.00 (ddd, J = 16.4,
8.8, 6.4 Hz, 1 H), 2.68 (dt, J = 16.4,
5.2 Hz, 1 H) ppm. ¹³C NMR (100 MHz): δ = 160.9, 149.7,
135.2, 132.9, 130.2, 129.2, 128.2, 127.0, 126.7, 107.5, 104.0, 101.4,
78.8, 58.3, 55.2, 42.1, 26.6 ppm. HRMS (APCI): m/z calcd
for C17H19N2O3 [M + 1]+:
299.1390; found: 299.1391.
2-(3-Methoxyphenyl)-1-(1-nitroethyl)-1,2,3,4-tetrahydroisoquinoline
(3j)
The ratio of isolated diastereomers is 1.7. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.05 (dq, J = 14.8, 6.4
Hz, 1 H), 3.79 (s, 3 H), 1.55 (d, J = 6.4
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.7,
150.2, 134.7, 131.9, 130.0, 128.7, 128.2, 126.6, 107.9, 104.0, 101.8,
85.4, 62.8, 55.2, 42.7, 26.5, 16.3 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 4.88 (dq, J = 14.8, 6.4
Hz, 1 H), 3.82 (s, 3 H), 1.71 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (100 MHz): δ = 160.8,
150.5, 135.6, 133.8, 130.1, 129.1, 128.3, 127.3, 107.2, 103.1, 101.1,
88.9, 61.2, 55.2, 43.5, 26.9, 17.5 ppm.
Other overlapped
peaks: ¹H NMR (400 MHz): δ = 7.27-7.08 (m),
7.01-7.00 (m), 6.62-6.52 (m), 6.40-6.37
(m), 5.25-5.24 (m), 3.85-3.83 (m), 3.58-3.52
(m), 3.52-3.04 (m), 2.96-2.86 (m) ppm. ¹³C
NMR (100 MHz): δ = 126.2 ppm. HRMS (APCI): m/z calcd for C18H21N2O3 [M + 1]+: 313.1547;
found: 313.1549.
2-(3-Methoxyphenyl)-1-(1-nitropropyl)-1,2,3,4-tetrahydroisoquinoline
(3k)
The ratio of isolated diastereomers is 1.6. Isolated
by flash column chromatography (hexane-EtOAc = 5:1, R
f
= 0.4). Light
yellow oil.
Major isomer: ¹H NMR (400
MHz): δ = 5.12 (d, J = 9.6
Hz, 1 H), 4.86 (m, 1 H), 3.77 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.5, 150.3, 135.5, 133.8,
130.1, 129.3, 128.5, 128.2, 125.9, 108.3, 103.9, 102.2, 92.9, 62.2,
55.2, 42.3, 25.8, 24.5 ppm.
Minor isomer: ¹H
NMR (400 MHz): δ = 5.22 (d, J = 9.2
Hz, 1 H), 4.67 (m, 1 H), 3.81 (s, 3 H) ppm. ¹³C
NMR (100 MHz): δ = 160.7, 150.3, 134.6, 132.1,
129.8, 128.6, 128.2, 127.2, 126.6, 106.8, 102.8, 100.8, 96.1, 60.7,
55.1, 43.5, 26.9, 25.0 ppm.
Other overlapped peaks: ¹H
NMR (400 MHz): δ = 7.26-7.08 (m), 7.01-7.18
(m), 7.00-6.98 (m), 6.62-6.52 (m), 6.40-6.35
(m), 3.87-3.47 (m), 3.12-3.06 (m), 2.93-2.85
(m), 2.26-2.06 (m), 1.86-1.78 (m), 0.96-0.92
(m) ppm. ¹³C NMR (100 MHz): δ = 10.6
ppm. HRMS (APCI): m/z calcd
for C19H23N2O3 [M + 1]+:
327.1703; found: 327.1703.
16
Kwong FY.
Klapars A.
Buchwald SL.
Org.
Lett.
2002,
4:
581