Synthesis 2010(24): 4242-4250  
DOI: 10.1055/s-0030-1258301
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Lithium Naphthalenide-Induced Reductive Alkylation and Addition of Aryl- and Heteroaryl- Substituted Dialkylacetonitriles

Jing-Po Tsaoa, Ting-Yueh Tsaia, I-Chia Chenb, Hsing-Jang Liu*a, Jia-Liang Zhu*c, Sheng-Wei Tsaoc
a Department of Chemistry, National Tsing Hua University, Hsinchu 300013, Taiwan, R.O.C.
e-Mail: hjliu@mx.nthu.edu.tw;
b Department of Cosmetic Applications and Management, Cardinal Tien College of Healthcare and Management, Taipei, Taiwan, R.O.C.
c Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan, R.O.C.
Fax: +886(3)8633570; e-Mail: jlzhu@mail.ndhu.edu.tw;
Further Information

Publication History

Received 14 August 2010
Publication Date:
14 October 2010 (online)

Abstract

Lithium naphthalenide (LN)-induced reductive alkylation/addition reactions of aryl-, pyridyl-, and 2-thienyl-substituted dialkylacetonitriles have been investigated. Upon treatment with LN in THF at -40 ˚C, both aryl and pyridyl precursors could undergo the reductive decyanation smoothly, and the in situ generated carbanions could be readily trapped by alkyl halides, ketones, aldehydes, or even oxygen to afford a wide range of functionalized aromatic derivatives bearing a newly established quaternary carbon. To effect the desired reductive alkylation of 2-thienyldialkylacetonitriles, a much lower temperature such as -100 ˚C was required. Also with these substrates, an interesting ring-opening/S-alkylation process was observed when the reductive alkylation were performed at -78 ˚C to give 1-alkylsulfanyl-1,3,4-trienes. A mechanistic discussion is given for this observation.

    References

  • 1 House HO. In Modern Synthetic Reactions   2nd ed.:  W. A. Benjamin Inc.; New York: 1972.  p.492-628  
  • 2 Schaefer FC. In The Chemistry of the Cyano Group   Rappoport Z. Wiley-Interscience; London: 1970.  p.239-305  
  • 3 Mattalia J.-M. Marchi-Delapierre C. Hazimeh H. Chanon M. ARKIVOC  2006,  (iv):  90 
  • For recent examples, see:
  • 4a Morin MD. Rychnovsky SD. Org. Lett.  2005,  7:  2051 
  • 4b Burke YAM. Kotani SJ. Ziller W. Rychnovsky SD. Org. Lett.  2010,  12:  72 
  • 5a Shia KS. Chang NY. Yip J. Liu HJ. Tetrahedron Lett.  1997,  38:  7713 
  • 5b Liu HJ. Zhu JL. Shia KS. Tetrahedron Lett.  1998,  39:  4183 
  • 5c Zhu JL. Shia KS. Liu HJ. Chem. Commun.  2000,  1599 
  • 5d Liu HJ. Yip J. Synlett  2000,  1119 
  • 5e Liu HJ. Ly TW. Tai CL. Wu JD. Liang JK. Guo JC. Tseng NW. Shia KS. Tetrahedron  2003,  59:  1209 
  • 5f Wu JD. Shia KS. Liu HJ. Tetrahedron Lett.  2001,  42:  4207 
  • 5g Liu HJ. Ho YL. Wu JD. Shia KS. Synlett  2001,  1805 
  • 5h Tsia TY. Shia KS. Liu HJ. Synlett  2003,  97 
  • For our recent publications in this area, see:
  • 5i Ko YC. Zhu JL. Synthesis  2007,  3659 
  • 5j Amancha PK. Lai YC. Chen IC. Liu HJ. Zhu JL. Tetrahedron  2010,  66:  871 
  • 6 Coates RM. Shah SK. Mason RW. J. Am. Chem. Soc.  1982,  104:  2198 
  • 7 March J. In Advanced Organic Chemistry 4th ed.:  Wiley-Interscience; New York: 1992.  p.26-74  
  • For example: see:
  • 8a Ciufolini MA. Shen YC. J. Org. Chem.  1997,  62:  3804 
  • 8b Verhoest PR. Chapin DS. Corman M. Fonseca K. Harms JF. Hou X. Marr ES. Menniti FS. Nelson F. O’Connor R. Pandit J. Proulx-LaFrance C. Schmidt AW. Schmidt CJ. Suiciak JA. Liras S. J. Med. Chem.  2009,  52:  5188 
  • 8c DeLorbe JE. Lotz MD. Martin SF. Org. Lett.  2010,  12:  1576 
  • For example, see:
  • 9a Osuch L. J. Am. Chem. Soc.  1956,  78:  1723 
  • 9b Sashida H. Ito K. Tsuchiya T. Chem. Pharm. Bull.  1995,  43:  19 
  • 9c Smith AC. Macartney DH.
    J. Org. Chem.  1998,  63:  9243 
  • 9d Koning B. Buter J. Hulst R. Stroetinga R. Kellogg R. Eur. J. Org. Chem.  2000,  15:  2735 
  • 9e Gomez I. Alonso E. Ramon DJ. Yus M. Tetrahedron  2000,  56:  4043 
  • 9f Schneider U. Kobayashi S. Angew. Chem. Int. Ed.  2007,  119:  5909 
  • 10 Amano T. Yoshikawa K. Ogawa T. Sano T. Ohuchi Y. Chem. Pharm. Bull.  1986,  34:  4653 
  • 11 For the preparation of a solution of LN, see: Liu HJ. Yip J. Shia KS. Tetrahedron Lett.  1997,  38:  2253 
  • 12a

    Compounds 3a-c, 3j, 3o, 3p, 3r, 3t, 3v, and 3w are known. For some reported spectral data:

  • 12b 3a: Tietze L. Kinzel T. Wolfram T. Chem. Eur. J.  2009,  25:  6199 
  • 12c 3b: de Kimpe N. Bull. Soc. Chim. Belg.  1979,  88:  719 
  • 12d 3v: Liu Q. Duan H. Luo XC. Tang Y. Li G. Huang R. Lei A. Adv. Synth. Catal.  2008,  350:  1349 
  • 12e 3w: Yamamoto Y. Kawano S. Maekawa H. Nishiguchi I. Synlett  2004,  30 
  • 14 Takanishi K. Urabe H. Kuwajima I. Tetrahedron Lett.  1987,  28:  2281 
13

The stereogeometry of 5b-d remains to be determined.