Subscribe to RSS
DOI: 10.1055/s-0030-1259512
Chiral Zwitterions from Vicinal Diamines: Effective and Recoverable Asymmetric Enamine Catalysts
Publication History
Publication Date:
27 January 2011 (online)

Abstract
A series of chiral zwitterionic vicinal diamines were designed and synthesized. The zwitterionic catalysts demonstrated good reactivity and enantioselectivity in asymmetric enamine-based transformations and could be readily recycled and reused for four times.
Key words
chiral zwitterion - organocatalysts - enamine - catalyst immobilization
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Berkessel A.Groger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. -
1b
Dalko PI. Enantioselective Organocatalysis Wiley-VCH; Weinheim: 2007. -
1c
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
1d
Saito S.Yamamoto H. Acc. Chem. Res. 2004, 37: 570 -
1e
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
1f
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 - For recent examples, see:
-
2a
Luo SZ.Xu H.Li J.Zhang L.Cheng J.-P. J. Am. Chem. Soc. 2007, 129: 3074 -
2b
Chen W.Du W.Duan Y.-Z.Wu Y.Yang S.-Y.Chen Y.-C. Angew. Chem. Int. Ed. 2007, 46: 7667 -
2c
Kano T.Tanaka Y.Osawa K.Yurino T.Maruoka KJ. Chem. Commun. 2009, 1956 -
2d
Yang Y.-Q.Chen X.-K.Xiao H.Liu W.Zhao G. Chem. Commun. 2010, 46: 4130 -
2e
Liu C.Lu Y. Org. Lett. 2010, 12: 2278 -
2f
Luo SZ.Qiao YP.Zhang L.Li J.Li X.Cheng J.-P. J. Org. Chem. 2009, 74: 9521 -
2g
Li J.Fu NK.Li X.Luo SZ.Cheng J.-P. J. Org. Chem. 2010, 75: 4501 -
2h
Hu SS.Li J.Xiang J.Pan J.Luo SZ.Cheng J.-P. J. Am. Chem. Soc. 2010, 132: 7216 -
2i
Luo SZ.Zhou P.Li J.Cheng J.-P. Chem. Eur. J. 2010, 16: 4457 -
2j For a review, see:
Xu L.-W.Luo J.Lu Y. Chem. Commun. 2009, 1807 - 3 For a review, see:
Luo SZ.Zhang L.Cheng J.-P. Chem. Asian J. 2009, 4: 1184 - 4
Zhang L.Luo SZ.Mi XL.Liu S.Qiao YP.Xu H.Cheng J.-P. Org. Biomol. Chem. 2008, 6: 567 -
7a
Mase N.Thayumanavan R.Tanaka F.Barbas CF. Org. Lett. 2004, 6: 2527 -
7b
Wang W.Wang J.Li H. Angew. Chem Int Ed. 2005, 44: 1369 -
7c
Mase N.Watanabe K.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 4966 -
7d
Lalonde MP.Chen YG.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 6366 -
7e
Sato A.Yoshida M.Hara S. Chem. Commun. 2008, 46: 6242 -
7f
Zhang X.-J.Liu S.-P.Li X.-M.Yan M.Chan Albert SC. Chem. Commun. 2009, 7: 833 -
7g
Yoshida M.Sato A.Hara S. Org. Biomol. Chem. 2010, 8: 3031 -
7h
Xiao J.Xu F.-X.Lu Y.-P.Loh T.-P. Org. Lett. 2010, 12: 1220 -
7i
Chen J.-R.Cao Y.-J.Zou Y.-Q.Tan F.Fu L.Zhu X.-Y.Xiao W.-J. Org. Biomol. Chem. 2010, 8: 1275 -
7j
He TX.Gu Q.Wu X.-Y. Tetrahedron 2010, 66: 3195 -
7k
Bai J.-F.Xu X.-Y.Huang Q.-C.Peng L.Wang L.-X. Tetrahedron Lett. 2010, 51: 2803 -
8a
Nakadai M.Saito S.Yamamoto H. Tetrahedron 2002, 58: 8167 -
8b
Luo SZ.Li J.Zhang L.Xu H.Cheng J.-P. Chem. Eur. J. 2008, 14: 1273 -
8c
Luo SZ.Li J.Xu H.Zhang L.Cheng J.-P. Org. Lett. 2007, 9: 3675
References and Notes
Spectral Data for
Catalyst 3a
¹H NMR (300 MHz, D2O): δ = 7.93-7.95
(m, 1 H), 7.63-7.66 (m, 2 H), 7.48-7.51 (m, 1
H), 3.78-3.91 (m, 2 H), 3.65-3.70 (m, 1 H), 3.33-3.48
(m, 2 H), 2.04-2.23 (m, 3 H), 1.82-1.89 (m, 1
H). ¹³C NMR (75 MHz, D2O): δ = 172.5,
139.5, 133.1, 131.6, 127.8, 127.2, 60.6, 45.4, 39.8, 26.8, 22.6.
IR (neat): 3403, 3077, 2977, 2886, 1637, 1595, 1566, 1531, 1431,
1316, 1234, 1170, 1143, 1085, 1018, 833, 767, 731 cm-¹.
HRMS: m/z calcd for C12H16N2O4S [M + H]+: 285.0904;
found: 285.0902. [α]D
²0 +32.2
(c 0.5, MeOH).
Compound 3b: ¹H NMR (300 MHz,
D2O): δ = 3.72 (br
s, 1 H), 3.33 (br s, 2 H), 2.82-2.97 (br, 6 H), 2.22 (s,
1 H), 1.97-2.06 (m, 4 H), 1.73 (s, 1 H). ¹³C
NMR (75 MHz, D2O): δ = 59.0, 49.3,
48.8, 47.1, 45.5, 28.1, 23.6, 23.1. IR (neat): 3422, 2964, 2866,
1644, 1461, 1419, 1186, 1042 cm-¹.
HRMS:
m/z calcd for
C8H18N2O3S [M + H]+:
223.1111; found: 223.1109. [α]D
²0 +32.2
(c 0.5, MeOH).
Compound 3c: ¹H NMR (300 MHz,
D2O): δ = 3.80-3.84
(t, J = 6.6
Hz, 1 H), 3.37-3.41 (br, 2 H), 2.91-2.96 (br,
3 H), 2.62-2.75 (m, 4 H), 2.35 (br s, 2 H), 2.02-2.23
(m, 4 H), 1.94 (br s, 2 H), 1.75 (br, 7 H), 1.53 (br s, 1 H), 1.26-1.28
(br, 4 H), 0.91-0.94 (br, 2 H). ¹³C
NMR (75 MHz, D2O): δ = 60.9, 57.9,
55.7, 52.5, 48.9, 45.2, 35.3, 31.6, 28.0, 26.6, 25.9, 25.8, 22.9,
21.3. IR (neat): 3444, 2923, 2850, 1644, 1453, 1203, 1042 cm-¹.
HRMS: m/z calcd for C15H30N2O3S [M + H]+: 319.2050;
found: 319.2049. [α]D
²0 +33.8
(c 0.5, MeOH).
Compound 3d: ¹H NMR (300 MHz,
D2O): δ = 3.80-3.82 (m,
1 H), 3.37-3.42 (t, J = 7.2
Hz, 2 H), 2.92-2.97 (m, 3 H), 2.71-2.78 (m, 4
H), 2.37 (s, 2 H), 2.04-2.25 (m, 3 H), 1.95-1.97
(m, 2 H), 1.76-1.82 (m, 1 H), 0.95 (s, 9 H). ¹³C
NMR (D2O, 75 MHz): δ = 66.7, 58.1,
57.0, 54.7, 49.0, 45.1, 32.1, 28.0, 27.8, 22.8, 21.4. IR (neat):
3446, 2953, 2867, 2828, 1644, 1481, 1464, 1394, 1361, 1186, 1042
cm-¹. HRMS:
m/z calcd
for C13H28N2O3S [M + H]+:
293.1893; found: 293.1891. [α]D
²0 +16.8
(c 0.5, MeOH).
Compound 3e: ¹H NMR (300 MHz,
D2O): δ = 3.84 (s,
1 H), 3.33-3.38 (t, J = 6.6
Hz, 2 H), 2.66-3.03 (m, 7 H), 1.96-2.26 (m, 5
H), 1.71-1.77 (m, 1 H), 1.57-1.61 (m, 1 H), 1.40-1.42 (m,
1 H), 0.92-0.94 (d, J = 6
Hz, 6 H). ¹³C NMR (75 MHz, D2O): δ = 57.5,
54.7, 51.6, 51.4, 48.7, 45.2, 33.8, 28.2, 26.0, 23.0, 22.0, 21.9,
20.8. IR (neat): 3460, 2957, 2871, 1651, 1467, 1384, 1368, 1196,
1042 cm-¹. HRMS: m/z calcd
for C13H28N2O3S [M + H]+:
293.1893; found: 293.1882.
[α]D
²0 +12.2
(c 0.5, MeOH).
Compound 7: ¹H NMR (300 MHz,
D2O): δ = 3.09-3.14
(m, 1 H), 2.94-3.03 (br s, 2 H), 2.51-2.79 (m,
4 H), 2.16-2.20 (d, J = 11.4
Hz, 1 H), 1.80-2.00 (m, 5 H), 1.57-1.63 (m, 1 H),
1.33-1.44 (m, 6 H), 0.92-0.96 (q, J = 3.6, 6.3
Hz,). ¹³C NMR (75 MHz, D2O): δ = 62.7,
50.9, 48.8, 48.2, 47.8, 36.9, 30.2, 25.9, 24.6, 23.8, 23.2, 23.0,
22.3, 21.8. IR (neat): 3483, 3447, 2951, 2867, 1637, 1468, 1383,
1367, 1207, 1183, 1043 cm-¹. HRMS: m/z calcd for C14H30N2NaO3S [M + Na]+: 329.1869;
found: 329.1868. [α]D
²0 +59.4
(c 0.5, MeOH).
Upon long-term storage (>3 months), the solid becomes syrup due to the absorption of moisture. This syrup can be restored to solid power after dried under vaccum.