Synlett 2011(5): 694-698  
DOI: 10.1055/s-0030-1259534
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Aromatic Electrophilic Substitution vs. Intramolecular Wittig Reaction: Vinyltriphenylphosphonium Salt Mediated Synthesis of 4-Carboxyalkyl-8-formyl Coumarins

K. C. Majumdar*, Inul Ansary, Srikanta Samanta, Brindaban Roy
Department of Chemistry, University of Kalyani, Kalyani 741235, W.B., India
Fax: +91(33)25828282; e-Mail: kcm_ku@yahoo.co.in;
Further Information

Publication History

Received 27 November 2010
Publication Date:
08 February 2011 (online)

Abstract

4-Carboxyalkyl-8-formyl coumarins have been synthesized from 2-hydroxybenzaldehydes via vinyltriphenylphosphonium salt mediated aromatic electrophilic substitution in good yields. The vinyltriphenylphosphonium salt is generated in situ by protonation of the reactive 1:1 intermediate produced by the reaction of triphenylphosphine and dialkyl acetylenedicarboxylate with 2-hydroxybenzaldehydes.

    References and Notes

  • 1 Chakraborty DP. Das Gupta A. Bose PK. Ann Biochem. Exp. Med.  1957,  17:  57 
  • 2a Arora RB. Mathur CN. Br. J. Pharmacol.  1963,  20:  29 
  • 2b Link KP. Harvey Lect.  1943,  39:  162 
  • 3 Willette RE. Soine TO. J. Pharm. Sci.  1962,  51:  149 
  • 4 Molho D, Boschetti E, and Fontaine L. inventors; US  3175943.  1965; Chem. Abstr. 1966, 64, 14040a
  • 5 Schonberg A. Latif N. J. Am. Chem. Soc.  1954,  7:  6208 
  • 6 Kadis S. Cigler A. Ajl S. Microb. Toxins  1972,  7:  1 
  • 7 Ellis GP. West GB. Prog. Med. Chem.  1974,  10:  109 
  • 8 Holfmann R. Wells P. Morrison H. J. Org. Chem.  1971,  36:  102 
  • 9 Wells P. Morrison H. J. Am. Chem. Soc.  1975,  97:  154 
  • 10a Kostova I. Curr. Med. Chem.  2005,  5:  29 
  • 10b Campagne JM. Six Y. Science of Synthesis   Vol. 26:  Thieme; Stuttgart: 2004.  p.989 
  • 10c Borges F. Roleira F. Milhazes N. Santana L. Uriarte E. Curr. Med. Chem.  2005,  12:  887 
  • 11 Murray RDH. Mendez J. Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry   Wiley; New York: 1982. 
  • 12a Von Pechmann H. Duisberg C. Ber. Dtsch. Chem.  1883,  16:  2119 
  • 12b Von Pechmann H. Ber. Dtsch. Chem. Ges.  1884,  17:  929 
  • 12c John EVO. Israelstam SS.
    J. Org. Chem.  1961,  26:  240 
  • 12d Rao YVS. Kulkarni SJ. Subramanyam M. Rao AVR. J. Chem. Soc., Chem. Commun.  1993,  1456 
  • 13a Jones G. Org. React.  1976,  15:  204 
  • 13b Adams R. Bockstahler TE. J. Am. Chem. Soc.  1952,  74:  5346 
  • 13c Brufola G. Fringuelli F. Piermatti O. Pizzo F. Heterocycles  1996,  43:  1257 
  • 13d Kadin SB. J. Org. Chem.  1966,  31:  620 
  • 14 Johnson JR. Org. React.  1942,  1:  210 
  • 15 Shriner RL. Org. React.  1942,  1:  1 
  • 16 Woods LL. Sapp J. J. Org. Chem.  1962,  27:  3703 
  • 17a Simonis H. Remmert P. Ber. Dtsch. Chem. Ges.  1914,  47:  2229 
  • 17b Robertson A. Sandrock WF. Hendry CB. J. Chem. Soc.  1931,  2426 
  • 18 Sethna SM. Shah NM. Shah RC. J. Chem. Soc.  1938,  228 
  • 19a Potdar MK. Mohile SS. Salunkhe MM. Tetrahedron Lett.  2001,  42:  9285 
  • 19b Potdar MK. Rasalkar MS. Mohile SS. Salunkhe MM. J. Mol. Catal. A: Chem.  2005,  235:  249 
  • 20a Rodríguez-Domínguez JC. Kirsch G. Tetrahedron Lett.  2006,  47:  3279 
  • 20b Reddy BM. Patil MK. Lakshmanan PP. J. Mol. Catal. A: Chem.  2006,  256:  290 
  • 20c Selvakumar S. Chidambaram M. Singh AP. Catal. Commun.  2007,  8:  777 
  • 21 Bose DS. Rudradas AP. Babu MH. Tetrahedron Lett.  2002,  43:  9195 
  • 22 Kadnikov DV. Larock RC. Org. Lett.  2000,  2:  3643 
  • 23 Rajintha B. Naveen Kumar V. Someshwar P. Venu Madhav J. Narsimha Reddy P. Thirupathi Reddy Y. ARKIVOC  2006,  (xii):  23 
  • 24 Livant P. Xu W. J. Org. Chem.  1998,  63:  636 ; and references cited therein
  • 25a Khandekar AC. Khadilkar BM. Synlett  2002,  152 
  • 25b Gu Y. Zhang J. Duan Z. Deng G. Adv. Synth. Catal.  2005,  347:  512 
  • 26a Yavari I. Hekmat-Shoar R. Zonouki A. Tetrahedron Lett.  1998,  39:  2391 
  • 26b Yavari I. Adib M. Hojabri L. Tetrahedron  2001,  57:  7537 
  • 26c Yavari I. Abbasinejad A.-M. Hossaini Z. Org. Biomol. Chem.  2003,  1:  560 
  • 26d Galariniotou E. Fragos V. Makri A. Litinas KE. Nicolaides DN. Tetrahedron  2007,  63:  8298 
  • 26e Kumar P. Upadhyay PK. Tetrahedron Lett.  2009,  50:  236 
  • 27 Kumar P. Bodas MS. Org. Lett.  2000,  2:  3821 
  • 28 Hekmat-Shoar R. Souri S. Faridbod F. Phosphorus, Sulfur Silicon Relat. Elem.  2003,  178:  1457 
  • 29 Glasnov TN. Ivanov IC. Synth. Commun.  2008,  38:  1579 
  • 30 Majumdar KC. Ansary I. Sinha B. Chattopadhyay B. Synthesis  2009,  3593 
  • 32 Hekmat-Shoar R. Souri S. Rahimifard M. Faridbod F. Phosphorus, Sulfur Silicon Relat. Elem.  2002,  177:  2827 
  • 33 Cobridge DEC. Phosphorus: An Outline of the Chemistry, Biochemistry and Uses   5th ed.:  Elsevier; Amsterdam: 1995. 
  • 34a Johnson AW. Tebby JC. J. Chem. Soc.  1961,  2126 
  • 34b Caesar JC. Griffiths DV. Griffiths PA. Tebby JC. J. Chem. Soc., Perkin Trans. 1  1989,  1:  2425 
31

Synthesis of Ethyl 8-formyl-2-oxo-2 H -chromene-4-carboxylate (6a)
A mixture of 2-hydroxybenzaldehyde (4a, 200 mg, 0.81 mmol) and Ph3P (320 mg, 1.22 mmol) in DMF (7 mL) was stirred at r.t. for 10 min in a 25 mL round-bottom flask. A solution of diethyl acetylenedicarboxylate (206 mg, 1.22 mmol) in DMF (3 mL) was added dropwise for another 10 min, and the dark-brown coloured solution thus obtained was heated at 50 ˚C for 12 h. Then the reaction mixture was extracted with CH2Cl2 (3 × 20 mL), washed with H2O (4 × 20 mL), brine (20 mL), and dried over anhyd Na2SO4. The solvent was removed under reduced pressure to give a crude mass, and the product was isolated by silica gel (230-400 mesh) column chromatography using a mixture of EtOAc-PE (1:9) as an eluent, and pure product 6a was obtained as a solid, yield 82%; mp 117-118 ˚C. IR (KBr): 1699, 1725, 1746 cm. ¹H NMR (400 MHz, CDCl3): δ = 1.46 (t, 3 H, J = 7.2 Hz, CH2CH 3), 4.49 (q, 2 H, J = 6.8 Hz, CH 2CH3), 7.06 (s, 1 H, C3H of coumarin), 7.46 (t, 1H, J = 8.0 Hz, ArH), 8.14 (dd, 1 H, J = 7.6, 1.2 Hz, ArH), 8.59 (dd, 1 H, J = 8.0, 1.2 Hz, ArH), 10.73 (s, 1 H, CHO). ¹³C NMR (100 MHz, CDCl3): δ = 14.1, 62.9, 116.6, 119.8, 123.8, 124.7, 130.9, 133.0, 142.2, 155.5, 158.3, 163.3, 187.1. HRMS: m/z calcd for C13H10O5: 269.0426 [M + Na]+. Found: 269.0429 [M + Na]+. Anal. Calcd (%) for C13H10O5: C, 63.42; H, 4.09. Found: C, 62.91; H, 4.10.