Synthesis 2011(9): 1456-1464  
DOI: 10.1055/s-0030-1259982
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

An Access to Chiral β-Benzyl-γ-butyrolactones and Its Application to the Synthesis of Enantiopure (+)-Secoisolariciresinol, (-)-Secoisolariciresinol, and (-)-Enterolactone

Florent Allais*, Thomas J. L. Pla, Paul-Henri Ducrot*
INRA/AgroParisTech UMR1318 Institut Jean-Pierre Bourgin, INRA route de Saint-Cyr, 78026 Versailles Cedex, France
Fax: +33(1)30833119; e-Mail: florent.allais@versailles.inra.fr;
Further Information

Publication History

Received 24 January 2011
Publication Date:
01 April 2011 (online)

Abstract

Both enantiomers of secoisolariciresinol and enantiopure (-)-enterolactone were synthesized through a highly stereoselective convergent synthesis. An Evans diastereoselective alkylation followed by a substrate-induced diastereoselective α-alkylation of the newly formed optically active β-benzyl-γ-butyrolactone gave the β-β′ linkage of the target skeleton. The (S,S)- and (R,R)-enantiomers of secoisolariciresinol and (-)-enterolactone were obtained in 12-14% (11 steps) and 20% (7 steps) overall yield, respectively.

    References

  • 1a Ward RS. Nat. Prod. Rep.  1999,  16:  75 
  • 1b Ward RS. Nat. Prod. Rep.  1997,  14:  1943 
  • 1c Ward RS. Nat. Prod. Rep.  1995,  12:  1183 
  • 1d Ward RS. Nat. Prod. Rep.  1993,  10:  1 
  • 2 Ward RS. Chem. Soc. Rev.  1982,  11:  75 
  • 3 Harworth RD. J. Chem. Soc.  1942,  448 
  • 4a Bett WR. Practitioner  1951,  166:  77 
  • 4b Kucukboyaci N. Sener B. J. Med. Plant Res.  2010,  12:  1136 ; and references cited therein
  • 5a Morimoto T. Chiba M. Achiwa K. Heterocycles  1992,  33:  435 
  • 5b Ward RS. Tetrahedron  1990,  46:  5029 
  • 5c Ward RS. Synthesis  1992,  719 
  • 5d Ayres DC. Loike JD. In Lignans: Chemical, Biological and Clinical Properties   Cambridge University Press; Cambridge: 1990.  p.303-384  
  • 5e Whiting DC. Nat. Prod. Rep.  1990,  7:  349 
  • 5f Whiting DC. Nat. Prod. Rep.  1987,  4:  499 
  • 5g Pelter A. Recent Adv. Phytochem.  1986,  20:  201 
  • 5h Whiting DC. Nat. Prod. Rep.  1985,  2:  191 
  • 5i Pan J.-Y. Chen S.-L. Yang M.-H. Sinkkonen J. Zou K. Nat. Prod. Rep.  2009,  26:  251 
  • 6a Yoda H. Kitayama H. Katagiri T. Takabe K. Tetrahedron  1992,  48:  3313 
  • 6b Doyle MP. Protopopova MN. Zhou Q.-L. Bode JW. Simonsen SH. Lynch V. J. Org. Chem.  1995,  60:  6654 
  • 6c Tomioka K. Koga K. Tetrahedron Lett.  1979,  20:  3315 
  • 6d Tomioka K. Koga K. Heterocycles  1979,  12:  1523 
  • 6e Morimoto T. Chiba M. Achiwa K. Tetrahedron  1993,  49:  1793 
  • 6f Honda T. Kimura N. Sato S. Kato D. Tominaga H. J. Chem. Soc., Perkin Trans. 1  1994,  1043 
  • 6g Yang LM. Lin SJ. Yang TH. Lee KH. Bioorg. Med. Chem. Lett.  1996,  6:  941 
  • 6h Shiotani S. Okada H. Yamamoto T. Nakamata K. Adachi J. Nakamoto H. Heterocycles  1996,  43:  113 
  • 6i Posner GH. Kogan TP. Haines SR. Frye LL. Tetrahedron  1992,  25:  2627 
  • 6j Isemori Y. Kobayashi Y. Synlett  2004,  1941 
  • 7 Charlton JL. Chee G.-L. Can. J. Chem.  1997,  75:  1076 
  • 8 Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc.  1982,  104:  1737 
  • 9a

    Diastereomeric ratios were determined by NMR.

  • 9b

    Enantiomeric excesses were determined by chiral HPLC analysis.

  • 10 Yamauchi S. Okazaki M. Akiyama K. Sugahara T. Kishida T. Kashiwagi T. Org. Biomol. Chem.  2005,  3:  1670 
  • 11a Boyer F.-D. Ducrot P.-H. Synthesis  2000,  1686 
  • 11b Fétizon M. In Encyclopaedia of Reagents for Organic Synthesis   Vol. 6:  Paquette LA. Wiley; New York: 1995.  p.4448-4454  
  • 11c

    PCC oxidation was also used successfully with similar yields.

  • Compound 14 was prepared from vanillin by benzylation, reduction, and iodination:
  • 12a Meyers AI. Guiles J. Heterocycles  1989,  28:  295 
  • 12b van Oeveren A. Jansen JFGA. Feringa BL. J. Org. Chem.  1994,  59:  5999 
  • 12c Meng J. Jiang T. Aslam Bhatti H. Siddiqui BS. Dixon S. Kilburn JD. Org. Biomol. Chem.  2010,   8:  107 
  • 13a Groen MB. Leemhuis J. Tetrahedron Lett.  1980,  21:  5043 
  • 13b Ghosh M. Tetrahedron  2007,  63:  11710 
  • 13c Asaoka M. Fujii N. Shima K. Takei H. Chem. Lett.  1988,  805 
  • 13d Bode JW. Doyle MP. Protopopova MN. Zhou Q.-L. J. Org. Chem.  1996,  61:  9146 
  • 13e Chenevert R. Mohammad-Ziarani G. Caron D. Dasser M. Can. J. Chem.  1999,  77:  223 
  • 13f Jin J.-S. Kakiuchi N. Hattori M. Biol. Pharm. Bull.  2007,  30:  2204 
  • 13g Wang L.-Q. Meselhy MR. Li Y. Qin G.-W. Hattori M. Chem. Pharm. Bull.  2000,  48:  1606 
  • 13h Sibi MP. Liu P. Johnson MD. Can. J. Chem.  2000,  78:  133 
  • 13i Sibi MP. Liu P. Ji J. Hajra S. Chen J.-X. J. Org. Chem.  2002,  67:  1738 
  • 13j Eklund P. Lindholm A. Mikkola J.-P. Smeds A. Lehtila R. Sjoholm R. Org. Lett.  2003,  5:  491 
  • 13k Yan B. Spilling CD. J. Org. Chem.  2004,  69:  2859 
  • 13l Hajra S. Giri AK. Hazra S. J. Org. Chem.  2009,  74:  7978 
  • 13m Yoda H. Kitayama H. Katagiri T. Takabe K. Tetrahedron  1992,  48:  3313 
  • 13n Doyle MP. Protopopova MN. Zhou Q.-L. Bode JW. Simonsen SH. Lynch V. J. Org. Chem.  1995,  60:  6654 
  • 13o van Oeveren A. Jansen JFGA. Feringa BL. J. Org. Chem.  1994,  59:  5999 
  • 14 Li D. Zhao B. Sim S.-P. Li T.-K. Liu LF. LaVoie EJ. Bioorg. Med. Chem.  2003,  11:  3795 
  • 15 Shao L. Miyata S. Muramatsu H. Kawano H. Ishii Y. Saburi M. Uchida Y. J. Chem. Soc., Perkin Trans. 1  1990,  1441 
  • 16 Yamauchi S. Masuda T. Sugahara T. Kawaguchi Y. Ohuchi M. Someya T. Akiyama J. Tominoga S. Yamawaki M. Kishida T. Akiyama K. Maruyama M. Biosci. Biotechnol. Biochem.  2008,  72:  2981 
  • 17 Brown E. Daugan A. Heterocycles  1987,  26:  1169 
  • 18a Moon SS. Rahman AA. Kim J.-Y. Kee S.-H. Bioorg. Med. Chem.  2008,  16:  7264 
  • 18b Xie L.-H. Akao T. Hamasaki K. Deyama T. Hattori M. Chem. Pharm. Bull.  2003,  51:  508 
  • 18c Zhang L. Henriksson G. Gellerstedt G.  Org. Biomol. Chem.  2003,   20:  3621 
  • 18d Wang Q. Yang Y. Li Y. Yu W. Hou ZJ. Tetrahedron  2006,  62:  6107 
  • 18e Banskota AH. Tezuka Y. Nguyen NT. Awale S. Nobukawa T. Kadota S. Planta Med.  2003,  69:  500