Abstract
A one-pot thiourea-catalyzed enantioselective synthesis of polyfunctionalized
4H-chromenes via a domino Michael-hemiacetalization
reaction and subsequent dehydration is reported. Starting from 2-nitrovinylphenols
and β-keto esters, the new protocol affords the 4H-chromenes bearing a variety of functional
groups with good to excellent yields (76-95%)
and enantioselectivities ranging from 30-99% ee.
Both enantiomers are available at will depending on the ephedrine
or pseudoephedrine-based thiourea catalyst used.
Key words
organocatalysis - cascade reaction - thiourea - one-pot reaction - 4H-chromene
References
<A NAME="RC26811SS-1A">1a</A>
Shen HC.
Tetrahedron
2009,
65:
3931
<A NAME="RC26811SS-1B">1b</A>
Ferreira SB.
da Silva F. de C.
Pinto AC.
Gonzaga DTG.
Ferreira VF.
J.
Heterocycl. Chem.
2009,
46:
1080
<A NAME="RC26811SS-1C">1c</A>
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RC26811SS-1D">1d</A>
Nicolaou KC.
Pfefferkorn JA.
Roecker AJ.
Cao G.-Q.
Barluenga S.
Mitchell HJ.
J.
Am. Chem. Soc.
2000,
122:
9939
<A NAME="RC26811SS-1E">1e</A>
Keay BA. In Comprehensive Heterocyclic Chemistry
II
Vol. 2:
Pergamon;
Oxford:
1996.
<A NAME="RC26811SS-1F">1f</A>
Schweizer EE.
Meeder-Nycz O. In Chromenes, Chromanes, Chromones
Ellis GP.
Wiley-Interscience;
New
York:
1977.
For examples of catalytic asymmetric
syntheses of 4H-chromenes, see:
<A NAME="RC26811SS-2A">2a</A>
Zhang X.
Zhang S.
Wang W.
Angew. Chem.
Int. Ed.
2010,
49:
1481
<A NAME="RC26811SS-2B">2b</A>
Alemán J.
Nûńez A.
Marzo L.
Marcos V.
Alvarado C.
Ruano JLG.
Eur.
J. Org. Chem.
2010,
9453
<A NAME="RC26811SS-2C">2c</A>
Lu D.
Li Y.
Gong Y.
J.
Org. Chem.
2010,
75:
6900
<A NAME="RC26811SS-2D">2d</A>
Ramachary DB.
Sakthidevi R.
Org.
Biomol. Chem.
2010,
8:
4259
<A NAME="RC26811SS-2E">2e</A>
Nishikata T.
Yamamoto Y.
Miyaura N.
Adv.
Synth. Catal.
2007,
349:
1759
For general reviews on domino, tandem,
or multicomponent reactions, see for example:
<A NAME="RC26811SS-3A">3a</A>
Enders D.
Jeanty M.
Grondal C.
Nat.
Chem.
2010,
2:
167
<A NAME="RC26811SS-3B">3b</A>
Yu X.
Wang W.
Org. Biomol. Chem.
2008,
6:
2037
<A NAME="RC26811SS-3C">3c</A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RC26811SS-3D">3d</A>
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in Organic
Synthesis
Wiley-VCH;
Weinheim:
2006.
<A NAME="RC26811SS-3E">3e</A>
Guo H.-C.
Ma J.-A.
Angew. Chem. Int. Ed.
2006,
45:
354
<A NAME="RC26811SS-3F">3f</A>
Pellissier H.
Tetrahedron
2006,
62:
1619
<A NAME="RC26811SS-3G">3g</A>
Wasilke J.-C.
Obrey SJ.
Baker RT.
Bazan GC.
Chem. Rev.
2005,
105:
1001
<A NAME="RC26811SS-3H">3h</A>
Ramón DJ.
Yus M.
Angew.
Chem. Int. Ed.
2005,
44:
1602
<A NAME="RC26811SS-3I">3i</A>
Zhu J.
Bienaymé H.
Multicomponent
Reactions
Wiley-VCH;
Weinheim:
2005.
For selected general reviews see:
<A NAME="RC26811SS-4A">4a</A>
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RC26811SS-4B">4b</A>
Taylor MS.
Jacobsen EN.
Angew.
Chem. Int. Ed.
2006,
45:
1520
<A NAME="RC26811SS-4C">4c</A>
Doyle AG.
Jacobsen EN.
Chem.
Rev.
2007,
107:
5713
<A NAME="RC26811SS-4D">4d</A>
Zhang Z.
Schreiner PR.
Chem. Soc. Rev.
2009,
38:
1187
<A NAME="RC26811SS-4E">4e</A>
Kotke M.
Schreiner P. R. In Hydrogen
Bonding in Organic Synthesis
Pihko PM.
Wiley-VCH;
Weinheim:
2009.
p.141-352
<A NAME="RC26811SS-4F">4f</A>
Takemoto Y.
Chem.
Pharm. Bull.
2010,
58:
593
<A NAME="RC26811SS-4G">4g</A>
Etzenbach-Effers K.
Berkessel A.
Top. Curr. Chem.
2009,
291:
1
<A NAME="RC26811SS-4H">4h</A>
Knowles R.
R.
Jacobsen EN.
Proc.
Natl. Acad. Sci. U.S.A.
2010,
107:
20678
For recent selected examples of
organocatalytic asymmetric Michael additions of 1,3-dicarbonyl compounds
to nitroalkenes, see:
<A NAME="RC26811SS-5A">5a</A>
Pu X.-W.
Peng F.-Z.
Zhang H.-B.
Shao Z.-H.
Tetrahedron
2010,
66:
3655
<A NAME="RC26811SS-5B">5b</A>
Yu Z.
Liu X.
Zhou L.
Lin L.
Feng X.
Angew. Chem.
Int. Ed.
2009,
48:
5195
<A NAME="RC26811SS-5C">5c</A>
Li H.
Zu L.
Xie H.
Wang W.
Synthesis
2009,
1525
<A NAME="RC26811SS-5D">5d</A>
Li H.
Zhang S.
Yu C.
Song X.
Wang W.
Chem. Commun.
2009,
2136
<A NAME="RC26811SS-5E">5e</A>
Luo J.
Xu L.-W.
Hay RAS.
Lu Y.
Org. Lett.
2009,
11:
437
<A NAME="RC26811SS-5F">5f</A>
McGarraugh PG.
Brenner SE.
Tetrahedron
2009,
65:
449
<A NAME="RC26811SS-5G">5g</A>
Almaºi D.
Alonso DA.
Gómez-Bengoa E.
Nájera C.
J.
Org. Chem.
2009,
74:
6163
<A NAME="RC26811SS-5H">5h</A>
Jiang X.
Zhang Y.
Liu X.
Zhang G.
Lai L.
Wu L.
Zhang J.
Wang R.
J.
Org. Chem.
2009,
74:
5562
<A NAME="RC26811SS-5I">5i</A>
Oh Y.
Kim SM.
Kim DY.
Tetrahedron
Lett.
2009,
50:
4674
<A NAME="RC26811SS-5J">5j</A>
Pu X.-W.
Peng F.-Z.
Zhang H.-B.
Shao Z.-H.
Eur. J. Org. Chem.
2009,
4622
<A NAME="RC26811SS-5K">5k</A>
Ju Y.-D.
Xu L.-W.
Li L.
Lai G.-Q.
Qiu H.-Y.
Jiang J.-X.
Lu Y.
Tetrahedron
Lett.
2008,
49:
6773
<A NAME="RC26811SS-5L">5l</A>
Gao P.
Wang C.
Wu Y.
Zhou Z.
Tang C.
Eur. J. Org.
Chem.
2008,
4563
<A NAME="RC26811SS-5M">5m</A>
Zhang Z.-H.
Dong X.-Q.
Chen D.
Wang C.-J.
Eur. J. Org. Chem.
2008,
8780
<A NAME="RC26811SS-5N">5n</A>
Wang C.-J.
Zhang Z.-H.
Dong X.-Q.
Wu X.-J.
Chem. Commun.
2008,
1431
<A NAME="RC26811SS-5O">5o</A>
Peng F.-Z.
Shao Z.-H.
Fan B.-M.
Song H.
Li G.-P.
Zhang H.-B.
J. Org. Chem.
2008,
73:
5202
For selected examples on ephedrine
based catalysts and ligands in asymmetric synthesis, see:
<A NAME="RC26811SS-6A">6a</A>
Flock AM.
Krebs A.
Bolm C.
Synlett
2010,
1219
<A NAME="RC26811SS-6B">6b</A>
Paixao MW.
de Godoi M.
Rhoden CRB.
Westermann B.
Wessjohann LA.
Lüdtke DS.
Braga AL.
J.
Mol. Catal. A: Chem.
2007,
261:
120
<A NAME="RC26811SS-6C">6c</A>
Garnier JM.
Robin S.
Rousseau G.
Eur. J. Org. Chem.
2007,
3281
<A NAME="RC26811SS-6D">6d</A>
Berkessel A.
Mukherjee S.
Müller TN.
Cleemann F.
Roland K.
Brandenburg M.
Neudörfl J.-M.
Lex J.
Org. Biomol. Chem.
2006,
4 :
4319
<A NAME="RC26811SS-6E">6e</A>
Mlynarski J.
Rakiel B.
Stodulski M.
Agata Suszczyńska A.
Frelek J.
Chem. Eur. J.
2006,
12:
8158
<A NAME="RC26811SS-6F">6f</A>
Enders D.
Zhu J.
Kramps LA.
Liebigs
Ann./Recl.
1997,
1101
<A NAME="RC26811SS-6G">6g</A>
Enders D.
Zhu J.
Raabe G.
Angew.
Chem., Int. End. Engl.
1996,
35 :
1725
<A NAME="RC26811SS-6H">6h</A>
Soai K.
Okudo M.
Okamoto M.
Tetrahedron
Lett.
1991,
32:
95
For reviews on organocatalytic asymmetric
Michael additions, see:
<A NAME="RC26811SS-7A">7a</A>
Enders D.
Wang C.
Liebich JX.
Chem.
Eur. J.
2009,
15:
11058
<A NAME="RC26811SS-7B">7b</A>
Sulzer-Mossé S.
Alexakis A.
Chem. Commun.
2007,
3123
<A NAME="RC26811SS-7C">7c</A>
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
<A NAME="RC26811SS-7D">7d</A>
Vicario JL.
Badía D.
Carrillo L.
Synthesis
2007,
2065
<A NAME="RC26811SS-7E">7e</A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RC26811SS-7F">7f</A> For asymmetric Michael
additions to nitroalkenes, see:
Enders D.
Berner OM.
Tedeschi L.
Eur.
J. Org. Chem.
2002,
1877
<A NAME="RC26811SS-7G">7g</A> For sulfa-Michael additions,
see:
Enders D.
Lüttgen K.
Narine AA.
Synthesis
2007,
959
<A NAME="RC26811SS-8">8</A>
Enders D.
Wang C.
Yang X.
Raabe G.
Adv. Synth. Catal.
2010,
352:
2869
<A NAME="RC26811SS-9">9</A> The (E)-2-(2-nitrovinyl)phenols
were synthesized from the corresponding substituted salicylaldehydes
and nitromethane in the AcOH/NH4OAc system,
according to:
Zhang B.-L.
Wang F.-D.
Yue J.-M.
Synlett
2006,
567
<A NAME="RC26811SS-10">10</A>
Okino T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2003,
125:
12672
<A NAME="RC26811SS-11A">11a</A>
Nie S.-Z.
Hu Z.-P.
Xuan Y.-N.
Wang J.-J.
Li
X.-M.
Yan M.
Tetrahedron:
Asymmetry
2010,
21:
2055
<A NAME="RC26811SS-11B">11b</A>
Schmitt E.
Schiffers I.
Bolm C.
Tetrahedron
2010,
66:
6349
<A NAME="RC26811SS-12">12</A>
Rampalakos C.
Wulff WD.
Adv. Synth. Catal.
2008,
350:
1785
<A NAME="RC26811SS-13">13</A>
CCDC 816422 (4a),
816423 (ent-4b),
816424 (4f) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.