Synthesis 2011(12): 1865-1879  
DOI: 10.1055/s-0030-1260602
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Isothiourea-Catalyzed Asymmetric O- to C-Carboxyl Transfer of Furanyl Carbonates

Caroline Joannesse, Louis C. Morrill, Craig D. Campbell, Alexandra M. Z. Slawin, Andrew D. Smith*
EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
Fax: +44(1334)463806; e-Mail: ads10@st-andrews.ac.uk;
Further Information

Publication History

Received 28 April 2011
Publication Date:
25 May 2011 (online)

Abstract

The ability of a chiral isothiourea to promote the regio- and enantioselective O- to C-carboxyl transfer of a series of 3-alkyl-5-aryl- and 5-methyl-3-phenylfuranyl carbonates is examined, generating preferentially the α-regioisomers (α/γ up to 83:17) with high asymmetric induction (up to 83% ee).

    References and Notes

  • For representative examples, see:
  • 1a Figadére B. Acc. Chem. Res.  1995,  28:  359 
  • 1b Tu L. Zhao Y. Yu Z. Cong Y. Xu G. Peng L. Zhang P. Cheng X. Zhao Q. Helv. Chim. Acta  2008,  91:  1578 
  • 1c de Guzman FS. Schmitz FJ. J. Nat. Prod.  1990,  53:  926 
  • 1d Evidente A. Sparapano L. J. Nat. Prod.  1994,  57:  1720 
  • 1e Dogné J. Supuran CT. Pratico D. J. Med. Chem.  2005,  48:  2251 
  • 1f Braña MF. García ML. Lòpez B. de Pascual-Teresa B. Ramos A. Pozuelo JM. Domínguez MT. Org. Biomol. Chem.  2004,  2:  1864 
  • 2 Singh RP. Foxman BM. Deng L. J. Am. Chem. Soc.  2010,  132:  9558 
  • 3 Brown SP. Goodwin NC. MacMillan DWC. J. Am. Chem. Soc.  2003,  125:  1192 
  • 4 Shaw SA. Aleman P. Christy J. Kampf JW. Va P. Vedejs E. J. Am. Chem. Soc.  2006,  128:  925-934  
  • 5 For an excellent recent review of Lewis base mediated reaction processes, see: Denmark SE. Beutner GL. Angew. Chem. Int. Ed.  2008,  47:  1560 
  • For examples of our previous research programme concerned with applications of NHCs in organocatalysis, see:
  • 6a Thomson JE. Rix K. Smith AD. Org. Lett.  2006,  8:  3785 
  • 6b Thomson JE. Campbell CD. Concellón C. Duguet N. Rix K. Slawin AMZ. Smith AD. J. Org. Chem.  2008,  73:  2784 
  • 6c Campbell CD. Duguet N. Gallagher KA. Thomson JE. Lindsay AG. O’Donoghue A. Smith AD. Chem. Commun.  2008,  3528 
  • 6d Duguet N. Campbell CD. Slawin AMZ. Smith AD. Org. Biomol. Chem.  2008,  6:  1108 
  • 6e Thomson JE. Kyle AF. Concellón C. Gallagher KA. Lenden P. Morrill LC. Miller AJ. Joannesse C. Slawin AMZ. Smith AD. Synthesis  2008,  2805 
  • 6f Concellón C. Duguet N. Smith AD. Adv. Synth. Catal.  2009,  351:  3001 
  • 6g Duguet N. Donaldson A. Leckie SM. Douglas J. Shapland P. Churchill G. Slawin AMZ. Smith AD. Tetrahedron: Asymmetry  2010,  21:  582 
  • 6h Duguet N. Donaldson A. Leckie SM. Shapland P. Slawin AMZ. Smith AD. Tetrahedron: Asymmetry  2010,  21:  601 
  • 6i Douglas J. Ling KB. Concellón C. Churchill G. Slawin AMZ. Smith AD. Eur. J. Org. Chem.  2010,  5863 
  • 6j Ling KB. Smith AD. Chem. Commun.  2011,  47:  373 
  • 6k Campbell CD. Collett CJ. Thomson JE. Slawin AMZ. Smith AD. Org. Biomol. Chem.  2011,  9:  4205 
  • For examples of our previous research programme concerned with applications of isothioureas in organocatalysis, see:
  • 7a Joannesse C. Simal C. Concellón C. Thomson JE. Campbell CD. Slawin AMZ. Smith AD. Org. Biomol. Chem.  2008,  6:  2900 
  • 7b Woods PA. Morrill LC. Lebl T. Slawin AMZ. Bragg RA. Smith AD. Org. Lett.  2010,  12:  2660 
  • 7c Belmessieri D. Joannesse C. Woods PA. MacGregor C. Jones C. Campbell CD. Johnston CP. Duguet N. Concellón C. Bragg RA. Smith AD. Org. Biomol. Chem.  2011,  9:  559 
  • 7d Belmessieri B. Morrill LC. Simal C. Slawin AMZ. Smith AD. J. Am. Chem. Soc.  2011,  133:  2714 
  • For initial work, see:
  • 8a Steglich W. Höfle G. Tetrahedron Lett.  1970,  11:  4727 
  • For asymmetric Steglich rearrangements of oxazolyl carbonates, see:
  • 8b Ruble JC. Fu GC. J. Am. Chem. Soc.  1998,  120:  11532 
  • 8c Shaw SA. Aleman P. Vedejs E. J. Am. Chem. Soc.  2003,  125:  13368 
  • 8d Nguyen HV. Butler DCD. Richards CJ. Org. Lett.  2006,  8:  769 
  • 8e Busto E. Gotor-Fernández V. Gotor V. Adv. Synth. Catal.  2006,  348:  2626 
  • 8f Seitzberg JG. Dissing C. Søtofte I. Norrby P.-O. Johannsen M. J. Org. Chem.  2005,  70:  8332 
  • 8g Dietz FR. Gröger H. Synlett  2008,  663 
  • 8h Dietz FR. Gröger H. Synthesis  2009,  4208 
  • 8i Uraguchi D. Koshimoto K. Miyake S. Ooi T. Angew. Chem. Int. Ed.  2010,  49:  5567 
  • 8j Zhang Z. Xie F. Jia J. Zhang W. J. Am. Chem. Soc.  2010,  132:  15939 
  • 9 Joannesse C. Johnston CP. Concellón C. Simal C. Philp D. Smith AD. Angew. Chem. Int. Ed.  2009,  48:  8914 
  • Selected alternative applications of chiral isothioureas in asymmetric catalysis are listed herein. For kinetic resolutions using anhydrides as acylating agents, see:
  • 10a Birman VB. Jiang H. Li X. Geo V. Uffman EW. J. Am. Chem. Soc.  2006,  128:  6536 
  • 10b Birman VB. Li X. Org. Lett.  2006,  8:  1351 
  • 10c Birman VB. Geo L. Org. Lett.  2006,  8:  4859 
  • 10d Birman VB. Jiang H. Li X. Org. Lett.  2007,  9:  3237 
  • 10e Birman VB. Li X. Org. Lett.  2008,  10:  1115 
  • 10f Yang X. Birman VB. Adv. Synth. Catal.  2009,  351:  2525 
  • 10g Xu Q. Zhou H. Geng X. Chen P. Tetrahedron  2009,  65:  2232 
  • 10h Belmessieri D. Joannesse C. Woods PA. MacGregor C. Jones C. Campbell CD. Johnston CP. Duguet N. Concellón C. Bragg RA. Smith AD. Org. Biomol. Chem.  2011,  9:  559 
  • For kinetic resolutions using carboxylic acids as acylating agents utilising in situ formation of a reactive mixed anhydride, see:
  • 10i Shiina I. Nakata K. Tetrahedron Lett.  2007,  48:  8314 
  • 10j Shiina I. Nakata K. Sugimoto M. Onda Y. Iizumi T. Ono K. Heterocycles  2009,  77:  801 
  • 10k Yang X. Birman VB. Adv. Synth. Catal.  2009,  351:  2301 
  • 10l Shiina I. Nakata K. Heterocycles  2010,  80:  169 
  • 10m Shiina I. Nakata K. Onda Y. Eur. J. Org. Chem.  2008,  5887 
  • 10n Shiina I. Nakata K. Ono K. Sugimoto M. Sekiguchi A. Chem. Eur. J.  2010,  16:  167 
  • 10o Nakata K. Onda Y. Ono K. Shiina I. Tetrahedron Lett.  2010,  51:  5666 
  • 10p Shiina I. Ono K. Nakata K. Chem. Lett.  2011,  40:  147 
  • 12 The selenation/elimination sequence was based upon literature precedent in these systems: Pour M. Spulák M. Balsánek V. Kunes J. Kubanová P. Buchta V. Bioorg. Med. Chem.  2003,  11:  2843 
  • 13a White JD. Somers TC. Reddy GN. J. Org. Chem.  1992,  57:  4991 
  • 13b Donohoe TJ. Harris RM. Burrows J. Parker J. J. Am. Chem. Soc.  2006,  128:  13704 
  • 14 Reaction in toluene and Et2O at -20 ˚C gave <10% conversion to C-carboxy products, that was assumed to be due to low solubility of 1 at these temperatures
  • For representative examples that demonstrate the preference of substituents adjacent to an N-acyl group in heterocyclic compounds to adopt a pseudoaxial position, see:
  • 16a Sinclair PJ. Zhai D. Reibenspies J. Williams RMJ. J. Am. Chem. Soc.  1986,  108:  1103 
  • 16b Dellaria JF. Santarsiero BD. J. Org. Chem.  1989,  54:  3916 
  • 16c Drew MGB. Harwood LM. Park G. Price DW. Tyler SNG. Park CR. Cho SG. Tetrahedron  2001,  57:  5641 
  • 17 Anderson RJ. Adams KG. Chinn HR. Henrick CA. J. Org. Chem.  1980,  45:  2229 
11

2 was readily prepared on a multigram scale by alkylation of the dianion of phenylacetic acid with 2-methyloxirane; see experimental section for synthesis.

15

(R)-TADMAP was kindly donated by Prof. Edwin Vedejs. Consistent with the literature, rearrangement of furanyl carbonate 5 with (R)-TADMAP gave a 60:40 mixture of α/γ regioisomers, with purification giving the major α-regio-isomer 8 in 49% yield and 85% ee.