Synlett 2011(12): 1756-1760  
DOI: 10.1055/s-0030-1260934
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Mediated Intramolecular Buchwald-Hartwig α-Arylation of β-Amino Esters: Synthesis of Functionalized Tetrahydroisoquinolines

A. Gopi Krishna Reddy, J. Krishna, G. Satyanarayana*
Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram 502 205, Medak District, Andhra Pradesh, India
Fax: +91(40)23016032; e-Mail: gvsatya@iith.ac.in;
Further Information

Publication History

Received 7 April 2011
Publication Date:
05 July 2011 (online)

Abstract

A concise and efficient three-step strategy for the synthesis of functionalized 1,2,3,4-tetrahydroisoquinolines based on an intramolecular Buchwald-Hartwig α-arylation of β-amino esters is described. The synthesis presented is operationally simple and is amenable for the synthesis of a number of analogues.

    References and Notes

  • 1a Beller M. Riermeier TH. Stark G. In Transition Metals for Organic Synthesis   Vol. 1:  Beller M. Bolm C. Wiley-VCH; Weinheim: 1998.  p.208 
  • 1b Bräse S. de Meijere A. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  Chap. 3.
  • 1c Link JT. Overman LE. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  Chap. 6.
  • 1d Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 1e Poli G. Giambastiani G. Heumann A. Tetrahedron  2000,  56:  5959 
  • 1f Link JT. Org. React.  2002,  60:  157 
  • 2a Farina V. Krishnamurthy V. Scott W. J. Org. React.  1997,  50:  1 
  • 2b Duncton MAJ. Pattenden G. J. Chem. Soc., Perkin Trans. 1  1999,  1235 
  • 2c Gonthier E. Breinbauer R. Mol. Diversity  2005,  9:  51 
  • 2d Echavarren AM. Angew. Chem. Int. Ed.  2005,  44:  3962 ; Angew. Chem. 2005, 117, 4028
  • For a selection of reviews, see:
  • 3a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 3b Chemler SR. Trauner D. Danishefsky SJ. Angew. Chem. Int. Ed.  2001,  40:  4544 ; Angew. Chem. 2001, 113, 4676
  • 3c Darses S. Genet J.-P. Eur. J. Org. Chem.  2003,  4313 
  • 3d Bellina F. Carpita A. Rossi R. Synthesis  2004,  2419 
  • 3e Suzuki A. Chem. Commun.  2005,  4759 
  • 3f Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442; Angew. Chem. 2005, 117, 4516 
  • 3g Kantchev EAB. O’Brien CJ. Organ MG. Aldrichimica Acta  2006,  39:  97 
  • 4a Casser L. J. Organomet. Chem.  1975,  93:  253 
  • 4b Dieck HA. Heck FR. J. Organomet. Chem.  1975,  93:  259 
  • 4c Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  31:  4467 
  • 4d Sonogashira K. In Comprehensive Organic Synthesis   Vol. 32:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.521 
  • 4e Beller M. Zapf A. Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E. Wiley-Interscience; New York: 2002.  p.1209 
  • 4f Negishi IE. Anastasia L. Chem. Rev.  2003,  103:  1979 
  • 5a Kosugi M. Kameyama M. Migita T. Chem. Lett.  1983,  927 
  • 5b Guram AS. Buchwald SL. J. Am. Chem. Soc.  1994,  116:  7901 
  • 5c Guram AS. Runnels RA. Buchwald SL. Angew. Chem., Int. Ed. Engl.  1995,  34:  1348 
  • 5d Yang BH. Buchwald SL. J. Oganomet. Chem.  1999,  576:  125 
  • 5e Shaughnessy KH. Hamann BC. Hartwig JF. J. Org. Chem.  1998,  63:  6546 
  • 5f Khartulyari AS. Maier ME. Eur. J. Org. Chem.  2007,  317 
  • 5g Satyanarayana G. Maier ME. Tetrahedron  2008,  64:  356 
  • For some reviews, see:
  • 6a Kakiuchi F. Chatani N. Adv. Synth. Catal.  2003,  345:  1077 
  • 6b Dunina VV. Gorunova ON. Russ. Chem. Rev.  2004,  73:  309 
  • 6c Godula K. Sames D. Science  2006,  312:  67 
  • For some recent illustrative examples, see:
  • 7a Ohno H. Yamamoto M. Iuchi M. Tanaka T. Angew. Chem. Int. Ed.  2005,  44:  5103 ; Angew. Chem. 2005, 117, 5233
  • 7b Bertrand MB. Wolfe JP. Org. Lett.  2007,  9:  3073 
  • 7c Rudolph A. Rackelmann N. Lautens M. Angew. Chem. Int. Ed.  2007,  46:  1485 ; Angew. Chem. 2007, 119, 1507
  • 8a Solé D. Serrano O. Angew. Chem. Int. Ed.  2007,  46:  7270 
  • 8b Solé D. Serrano O. J. Org. Chem.  2008,  73:  9372 
  • 8c Solé D. Serrano O. J. Org. Chem.  2010,  75:  6267 
  • 9a Hartwig JF. Angew. Chem. Int. Ed.  1998,  37:  2046 
  • 9b Honda T. Namiki H. Satoh F. Org. Lett.  2001,  3:  631 
  • 9c Gaertzen O. Buchwald SL. J. Org. Chem.  2002,  67:  465 
  • 10 Bentley KW. Nat. Prod. Rep.  2006,  23:  444 
  • 11 Scott JD. Williams RM. Chem. Rev.  2002,  102:  1669 
  • 12 Stermitz FR. Lorenz P. Tawara JN. Zenewicz LA. Lewis K. Proc. Natl. Acad. Sci. U.S.A.  2000,  97:  1433 
  • 13 Cortijo J. Villagrasa V. Pons R. Berto L. Marti-Cabrera M. Martinez-Losa M. Domenech T. Beleta J. Morcillo EJ. Br. J. Pharmacol.  1999,  127:  1641 
  • 14 Kashiwada Y. Aoshima A. Ikeshiro Y. Chen Y.-P. Furukawa H. Itoigawa M. Fujioka T. Mihashi K. Cosentino LM. Morris-Natschke SL. Lee K.-H. Bioorg. Med. Chem.  2005,  13:  443 
  • 15 Goodman AJ. Le Bourdonnec B. Dolle RE. ChemMedChem.  2007,  2:  1552 
  • 16 Brossi A. Grethe G. Teitel S. Wildman WC. Bailey DT. J. Org. Chem.  1970,  35:  1100 
  • 17 Kobayashi S. Tokumoto T. Taira Z. J. Chem. Soc., Chem. Commun.  1984,  1043 
  • 18 Canadine synthesis: Matulenko MA. Meyers AI. J. Org. Chem.  1996,  61:  573 
  • 19 Synthesis of stepharinine and pronuciferine: Honda T. Shigehisa H. Org. Lett.  2006,  8:  657 
  • 20 Erythrocarine isolation: Chawla AS. Redha FMJ. Jackson AH. Phytochemistry  1985,  24:  1821 
  • 21 6,6a-Dihydrodemethoxygaudiscine isolation:
  • 22 Costa EV. Marques FA. Pinheiro MLB. Vaz NP. Duarte MCT. Delarmelina C. Braga RM. Sales Maia BHLN. J. Nat. Prod.  2009,  72:  1516 
  • 23 Chandrasekhar S. Reddy NR. Rao YS. Tetrahedron Lett.  2006,  62:  12098 
  • 24a Escalante J. Carrillo-Morales M. Linzaga I. Molecules  2008,  13:  340 
  • 24b Roy O. Faure S. Thery V. Didierjean C. Taillefumier C. Org. Lett.  2008,  10:  921 
25

General Procedure for Buchwald-Hartwig Cyclization: The following Procedure for 4a is Representative In an oven-dried Schlenk tube under nitrogen atmosphere were taken Pd(OAc)2 (10 mol%), Ph3P (20 mol%), and Cs2CO3 (2 mmol) in toluene (ca. 1.5 mL), and the mixture was stirred for 5 min. To this mixture was added ester 3a (1 mmol) in toluene (ca. 3.0 mL), and the reaction mixture was stirred for 24 h at 80 ˚C. Progress of the reaction was monitored by TLC, and, after the reaction is complete, it was quenched by addition of aq NH4Cl and extracted with CH2Cl2 (3 × 20 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel using PE-EtOAc as eluent furnished the product 4a in 82% yield.
Representative Analytical Data Compound 4a: IR: 3027, 2982, 1732, 1684, 1452, 1242, 1166, 1034, 741 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.36-7.10 (m, 8 H, ArH), 7.06-6.98 (m, 1 H, ArH), 4.20-4.10 (m, 2 H, OCH 2CH3), 3.85 (dd, 1 H, J = 5.2, 5.2 Hz,
4′-H), 3.80 [d, 1 H, J = 14.9 Hz, NCH2 (a,b)], 3.74 [d, 1 H, J = 13.2 Hz, NCH2 (a′,b′)], 3.65 [d, 1 H, J = 13.2 Hz, NCH2 (a′,b′)], 3.59 [d, 1 H, J = 14.9 Hz, NCH2(a,b)], 3.18 (dd, J = 11.5, 5.6 Hz, 1 H, NCH 2aCHCOOEt), 2.85 (dd, J = 11.5, 4.8 Hz, 1 H, N-CH 2bCHCOOEt), 1.23 (t, J = 7.2 Hz, 3 H, OCH2CH 3) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 173.25 (s, OC=O), 138.13 (s, ArC), 135.19 (s, ArC), 131.58 (s, ArC), 129.31 (d, ArC), 129.05 (d, 2 C, ArC), 128.32 (d, 2 C, ArC), 127.25 (d, ArC),126.92 (d, ArC), 126.75 (d, ArC), 126.31 (d, ArC), 62.31 (t, NCH2), 60.95 (t, OCH2CH3), 56.11 (t, NCH2), 52.95 (t, C-3′), 45.46 (d, C-4′), 14.22 (q, OCH2 CH3) ppm.
Compound 4b: 79% yield. IR: 2931, 2828, 1729, 1610, 1514, 1455, 1252, 1134, 1031, 741 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.41-7.24 (m, 5 H, ArH), 6.74 (s, 1 H, ArH), 6.52 (s, 1 H, ArH), 4.26-4.06 (m, 2 H, OCH 2CH3), 3.85 (s, 3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.78 (dd, 1 H, J = 5.0, 5.0 Hz, 4′-H), 3.74 [d, 1 H, J = 13.1 Hz, NCH2(a′,b′)], 3.67 [d, 1 H, J = 14.5 Hz, NCH2(a,b)], 3.65 [d, 1 H, J = 13.1 Hz, NCH2(a′,b′)], 3.52 [d, 1 H, J = 14.5 Hz, NCH2(a,b)], 3.17 (dd, 1 H, J = 11.4, 5.5 Hz, NCH 2aCHCOOEt), 2.85 (dd, 1 H, J = 11.4, 4.8 Hz, NCH 2bCHCOOEt), 1.22 (t, 3 H, J = 7.1 Hz, OCH2CH 3) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 173.3 (s, OC=O), 148.1 (s, ArC), 147.48 (s, ArC), 138.10 (s, ArC), 129.05 (d, 2 C, ArC), 128.29 (d, 2 C, ArC), 127.36 (s, ArC), 127.22 (d, ArC), 123.27 (s, ArC), 111.82 (d, ArC), 109.22 (d, ArC), 62.23 (t, NCH2), 60.87 (t, OCH2CH3), 55.92 (q, ArOCH3), 55.83 (q, ArOCH3), 55.66 (t, NCH2), 52.98 (t, C-3′), 44.91 (d, C-4′), 14.24 (q, OCH2 CH3) ppm. HRMS (ESI+): m/z calcd for [C21H25NNaO4]+ = [M + Na]+: 378.1676; found: 378.1685.
Compound 4c: 85% based on the recovery of 19% of starting material. IR: 2938, 2834, 1732, 1598, 1458, 1238, 1118, 741 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.42-7.20 (m, 5 H, ArH), 6.35 (s, 1 H, ArH), 4.25-4.00 (m, 2 H, OCH 2CH3), 3.87 (s, 3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.81 (s, 3 H, ArOCH3), 3.80-3.67 (m, 1 H, 4′-H), 3.74 [d, 1 H, J = 14.8 Hz, NCH2(a,b)], 3.72 [d, 1 H, J = 13.2 Hz, NCH2(a′,b′)], 3.70 [d, 1 H, J = 14.8 Hz, NCH2(a,b)], 3.60 [d, 1 H, J = 13.2 Hz, NCH2(a′,b′)], 3.08 (dd, 1 H, J = 11.5, 5.1 Hz, NCH 2aCHCOOEt), 2.81 (dd, 1 H, J = 11.5, 5.1 Hz, NCH 2bCHCOOEt), 1.20 (t, 3 H, J = 7.2 Hz, OCH2CH 3) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 173.86 (s, OC=O), 152.79 (s, ArC), 151.54 (s, ArC), 140.05 (s, ArC), 138.05 (s, ArC), 130.75 (s, ArC), 128. 94 (d, ArC), 128.59 (s, ArC), 128.30 (d, ArC), 127.22 (d, ArC), 118.36 (s, ArC), 104.82 (d, ArC), 61.98 (t, NCH2), 60.71 (q, ArOCH3), 60.69 (t, NCH2), 60.33 (q, ArOCH3), 55.90 (t, 2 C, OCH2CH3 and OCH3), 53.48 (t, NCH2CHCOOEt), 41.27 (d, NCH2 CHCOOEt), 14.23 (q, OCH2 CH3) ppm. HRMS (ESI+): m/z calcd for [C22H27NNaO4]+ = [M + Na]+: 408.1781; found: 408.1787.