Synlett 2011(14): 2021-2024  
DOI: 10.1055/s-0030-1261166
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Selective Catalytic Synthesis of (E,E)-1,4-Diiodobuta-1,3-diene via Atom-Efficient Addition of Acetylene and Iodine: A Versatile (E,E)-1,3-Diene Building Block in Cross-Coupling Reactions

Valentine P. Ananikov*a, Alexey S. Kashina, Oleg V. Hazipova,b, Irina P. Beletskaya*c, Zoya A. Starikovad
a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
Fax: +7(499)1355328; e-Mail:;
b Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences, R. Lyuksemburg Str. 70, Donetsk 83114, Ukraine
c Chemistry Department, Lomonosov Moscow State University, Vorob’evy Gory, Moscow 119899, Russian Federation
Fax: +7(495)9393618; e-Mail:;
d Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow 119991, Russian Federation
Further Information

Publication History

Received 16 May 2011
Publication Date:
10 August 2011 (online)


The first practical procedure is reported for the synthesis of (E,E)-1,4-diiodobuta-1,3-diene from very simple starting materials (acetylene and I2). A pure crystalline product was obtained in a green chemical procedure utilizing the key advantages of highly selective Pt-catalyzed transformation and 100% atom efficiency of the addition reaction. The Pt catalyst was recovered and re-used in the reaction without a noticeable loss of activity.

    References and Notes

  • 1a Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 2004. 
  • 1b Beller M. Bolm C. Transition Metals for Organic Chemistry   Wiley-VCH; Weinheim: 1998. 
  • 1c Cross-Coupling Reactions: A Practical Guide, In Topics in Current Chemistry   Vol. 219:  Miyaura N. Springer; Heidelberg: 2002. 
  • 1d Handbook of Organopalladium Chemistry for Organic Synthesis   Negishi E. John Wiley and Sons; New York / Chichester: 2002. 
  • 1e Nolan SP. Navarro O. C-C Bond Formation by Cross-Coupling, In Comprehensive Organometallic Chemistry III   Vol. 11:  Mingos DMP. Crabtree RH. Elsevier; Oxford: 2007.  p.1-37  
  • 1f Chinchilla R. Nájera C. Chem. Rev.  2007,  107:  874 
  • 2a Corbet J.-P. Mignani G. Chem. Rev.  2006,  106:  2651 
  • 2b Schlummer B. Scholz U. Adv. Synth. Catal.  2004,  346:  1599 
  • 3a Classics in Total Synthesis II   Nicolaou KC. Snyder SA. Wiley-VCH; Weinheim: 2003. 
  • 3b Classics in Total Synthesis   Nicolaou KC. Sorensen EJ. Wiley-VCH; Weinheim: 1996. 
  • 4a Chemler SR. Trauner D. Danishefsky SJ. Angew. Chem. Int. Ed.  2001,  40:  4544 
  • 4b Pattenden G. Sinclair DJ. J. Organomet. Chem.  2002,  653:  261 
  • 4c Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 
  • 4d Hong B.-C. Nimje RY. Curr. Org. Chem.  2006,  10:  2191 
  • 4e Sasaki M. Bull. Chem. Soc. Jpn.  2007,  80:  856 
  • 4f Negishi E.-i. Bull. Chem. Soc. Jpn.  2007,  80:  233 
  • 4g Denmark SE. Liu JH.-C. Angew. Chem. Int. Ed.  2010,  49:  2978 
  • 5 Ananikov VP. Hazipov OV. Beletskaya IP. Chem. Asian J.  2011,  6:  306 
  • 6 The Chemistry of Dienes and Polyenes   Rappoport Z. John Wiley and Sons; Chichester: 1997. 
  • 7 Mitchenko SA. Ananikov VP. Beletskaya IP. Ustynyuk YA. Mendeleev Commun.  1997,  130 
  • 8a Ananikov VP. Mitchenko SA. Beletskaya IP. Russ. J. Org. Chem.  2002,  38:  636 
  • 8b Ananikov VP. Mitchenko SA. Beletskaya IP. Nefedov SE. Eremenko IL. Inorg. Chem. Commun.  1998,  1:  411 
  • 9 Ananikov VP. Musaev DG. Morokuma K. Organometallics  2001,  20:  1652 
  • 16 Ananikov VP. Musaev DG. Morokuma K. Organometallics  2005,  24:  715 
  • 17a Babudri F. Farinola GM. Naso F. Ragni R. Spina G. Synthesis  2007,  3088 
  • 17b Trostyanskaya IG. Titskiy DY. Anufrieva EA. Borisenko AA. Kazankova MA. Beletskaya IP. Russ. Chem. Bull. Int. Ed.  2001,  50:  2095 
  • 17c Trostyanskaya IG. Maslova EN. Kazankova MA. Beletskaya IP. Russ. J. Org. Chem.  2008,  44:  24 
  • 17d Quesada E. Acuña AU. Amat-Guerri F. Angew. Chem. Int. Ed.  2001,  40:  2095 
  • 17e Serebryakov EP. Vasil’ev AA. Titskii DY. Beletskaya IP. Mendeleev Commun.  2000,  10:  168 
  • 17f Gung BW. Omollo AO. Eur. J. Org. Chem.  2009,  1136 

Activation barriers for both pathways are small in acetone and should be easy to overcome at r.t., thus the reaction is controlled thermodynamically (Scheme  [¹] ). Of course, the values of computed energies may be affected by known limitations of accuracy of DFT calculations, however, the relative reactivity should be correctly predicted.


As a proof of principle, complete E,E-stereoselectivity was observed in polar solvents (H2O and MeOH), while some minor amounts of E,Z-isomer may be detected in acetone. Note, however, that double-bond isomerization was also observed in the synthesized product. In either case this has no influence on the purity of final product obtained after purification step.


Synthetic Procedure for the Preparation of (E,E)-1,4-Diiodobuta-1,3-diene
The reaction was carried out in 20 mL tube with PTFE-sealed screw cap. The catalyst precursor PtCl4 (11.8 mg, 3.5˙10-5 mol), NaI (0.6 g, 4.0˙10 mol) and I2 (1.0 g, 4.0˙10 mol) were placed into the tube. Solution of acetylene in acetone (5 mL) was added to the tube. The tube was sealed with screw cap, and the reaction was carried out at r.t. for 20 h under stirring using a magnetic stirrer.¹³


Detailed description of the synthetic procedure, isolation, and purification of (E,E)-1,4-diiodobuta-1,3-diene, as well as catalyst regeneration and spectral characterization of the E,E-, E,Z-, and Z,Z-isomers are provided in the Supporting Information.


For detailed description of the X-ray analysis and NMR characterization of intermediate Pt complex see Supporting Information.


Dissociation of iodide ligands and formation of acetylene
π-complexes were omitted for clarity (Scheme  [¹] ). Note also, that replacement of iodide ligands by solvent molecules may also take place at various stages of the catalytic cycle.