Planta Med 2011; 77(15): 1712-1717
DOI: 10.1055/s-0030-1271063
Pharmakokinetic Investigations
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Metabolism of the Lignan Dehydrodiisoeugenol in Rats

Fei Li1 , 2 , Xiu-Wei Yang1
  • 1State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
  • 2Present address: Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
Weitere Informationen

Publikationsverlauf

received February 21, 2011 revised April 2, 2011

accepted April 4, 2011

Publikationsdatum:
03. Mai 2011 (online)

Abstract

Dehydrodiisoeugenol (DDIE), a major active lignan from the seed and aril of the fruit of Myristica fragrans Houtt., functions as a potential anti-inflammatory agent by inhibiting lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. However, the metabolism of DDIE remains unknown. This report describes the metabolic fate of DDIE in liver microsomes, urine, and feces of rats treated with DDIE. DDIE metabolites were isolated by sequential column chromatography and high-performance liquid chromatography from liver microsomes incubations, urine, and feces. Nine metabolites (M-1 to M-9), including 5 new metabolites, were determined spectroscopically using ultra-violet (UV), mass spectrometry (MS), nuclear magnetic resonance (NMR), and circular dichroism (CD). Analysis of the isolated metabolites showed that DDIE undergoes four major pathways of metabolism in the rat: oxidation (including hydroxylation, hydroformylation, and acetylation), demethylation, ring-opening, and dehydrogenation. In contrast to the metabolites from liver microsomes, the major metabolites in vivo were generated from DDIE by multiple metabolic reactions. Given these results, we describe a metabolic pathway for DDIE in the rat that gives insight into the metabolism of DDIE and the mechanism of DDIE bioactivity in humans.

References

  • 1 Thompson L U, Rickard S E, Orcheson L J, Seidl M M. Flaxseed and its lignan and oil components reduce mammary tumor growth at a late stage of carcinogenesis.  Carcinogenesis. 1996;  17 1373-1376
  • 2 Thompson L U, Seidl M M, Rickard S E, Fong H H. Antitumorigenic effect of a mammalian lignan precursor from flaxseed.  Nutr Cancer. 1996;  26 159-165
  • 3 Phipps W R, Martini M C, Lampe J W, Slavin J L, Kurzer M S. Effect of flax seed ingestion on the menstrual cycle.  J Clin Endocrinol Metab. 1993;  77 1215-1219
  • 4 Yang X W, Gao J S. Study on the chemical constituent of Myristica fragrans.  Chin Tradit Pat Med. 1994;  16 38-40
  • 5 Pharmacopoeia of the People's Republic of China, Volume I. Beijing; Chemical Industry Press 2005: 90-91
  • 6 Murakami Y, Shoji M, Hirata A, Tanaka S, Yokoe I, Fujisawa S. Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide- stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages.  Arch Biochem Biophys. 2005;  434 326-332
  • 7 Shin K H, Kim O N, Woo W S. Studies on crude drugs acting on drug-metabolizing enzymes. Part 12. Isolation of hepatic drug metabolism inhibitors from the seeds of Myristica fragrans.  Arch Pharmacol Res. 1988;  11 240-243
  • 8 Shin K H, Woo W S. Inhibition and induction of hepatic mixed function oxidase by phenylpropanoides from the seeds of Myristica fragrans.  Han'guk Saenghwa Hakhoechi. 1990;  23 122-127
  • 9 Hattori M, Hada S, Watahiki A, Ihara H, Shu Y Z, Kakiuchi N, Mizuno T, Namba T. Studies on dental caries prevention by traditional medicines. X. Antibacterial action of phenolic components from mace against Streptococcus mutans.  Chem Pharm Bull. 1986;  34 3885-3893
  • 10 Hattori M, Yang X W, Miyashiro H, Namba T. Inhibitory effects of monomeric and dimeric phenylpropanoids from mace on lipid peroxidation in vivo and in vitro.  Phytother Res. 1993;  7 395-401
  • 11 Yang X W, Huang X, Ma L, Wu Q, Xu W. The intestinal permeability of neolignans from the seeds of Myristica fragrans in the Caco-2 cell monolayer model.  Planta Med. 2010;  76 1587-1591
  • 12 Li F, Yang X W. Simultaneous determination of diastereomers (+)-licarin A and isolicarin A from Myristica fragrans in rat plasma by HPLC and its application to their pharmacokinetics.  Planta Med. 2008;  74 880-884
  • 13 Li F, Yang X W. Determination of dehydrodiisoeugenol in rat tissues using HPLC method.  Biomed Chromatogr. 2008;  22 1206-1212
  • 14 Li F, Yang X W. Biotransformation of myrislignan by rat liver microsomes in vitro.  Phytochemistry. 2008;  69 765-771
  • 15 Li F, Yang X W. Three new neolignans from the aril of Myristica fragrans.  Helv Chim Acta. 2007;  90 1491-1496
  • 16 Enriquez R G, Chavez M A, Reynolds W F. Phytochemical investigations of plants of the genus Aristolochia, 1. Isolation and NMR spectral characterization of eupomatenoid derivatives.  J Nat Prod. 1984;  47 896-899
  • 17 Kuroda K, Nakagawa-Izumi A. Analytical pyrolysis of lignin: products stemming from β-5 substructures.  Org Geochem. 2006;  37 665-673
  • 18 Hattori M, Yang X W, Shu Y Z, Kakiuchi N, Tezuka Y, Kikuchi T, Namba T. New Constituents of the aril of Myristica fragrans.  Chem Pharm Bull. 1988;  36 648-653
  • 19 Rouger J, Robert A. Ether bond cleavage by the action of potassium, in hexamethylphosphoramide solution in substances containing the dihydrobenzofuran structure considered as lignin model substances.  Chimique de France. 1972;  10 4039-4046
  • 20 Tsai I L, Hsieh C F, Duht C Y. Additional cytotoxic neolignans from Persea obovatifolla.  Phytochemistry. 1998;  48 1371-1375
  • 21 Paulo J C, Benevides P S, Massuo J K. Phenylpropanoids and neolignans from Piper regnellii.  Phytochemistry. 1999;  52 339-343
  • 22 Ito K, Ichino K, Iida T, Lai J. Neolignans from Magnolia kachirachirai.  Phytochemistry. 1984;  23 2643-2645
  • 23 Cao Y F, Zhang Y Y, Li J, Ge G B, Hu D, Liu H X, Huang T, Wang Y C, Fang Z Z, Sun D X, Huo H, Yin J, Yang L. CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes.  Xenobiotica. 2010;  40 38-47
  • 24 Chauret N, Li C, Ducharme Y, Trimble L A, Yergey J A, Ramachandran C, Nicoll-Griffith D A. In vitro and in vivo biotransformations of the naphthalenic lignan lactone 5-lipoxygenase inhibitor, L-702, 539.  Drug Metab Dispos. 1995;  23 65-71
  • 25 Bai X, Xie Y, Liu J, Qu J, Kano Y, Yuan D. Isolation and identification of urinary metabolites of kakkalide in rats.  Drug Metab Dispos. 2010;  38 281-286
  • 26 Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, Nishibe S, Adlercreutz H. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol.  J Agric Food Chem. 2001;  49 3178-3186
  • 27 Xie L H, Ahn E M, Akao T, Abdel-Hafez A A, Nakamura N, Hattori M. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria.  Chem Pharm Bull. 2003;  51 378-384
  • 28 Ikeya Y, Taguchi H, Mitsuhashi H, Sasaki H, Matsuzaki T, Aburada M, Hosoya E. Studies on the metabolism of gomisin A (TJN-101). I. Oxidative products of gomisin A formed by rat liver S9 mix.  Chem Pharm Bull. 1988;  36 2061-2069
  • 29 Smeds A I, Saarinen N M, Hurmerinta T T, Penttinen P E, Sjoholm R E, Makela S I. Urinary excretion of lignans after administration of isolated plant lignans to rats: the effect of single dose and ten-day exposures.  J Chromatogr B. 2004;  813 303-312
  • 30 Xie L H, Akao T, Hamasaki K, Deyama T, Hattori M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.  Chem Pharm Bull. 2003;  51 508-515

Prof. Dr. Xiu-Wei Yang

State Key Laboratory of Natural and Biomimetic Drugs
Department of Natural Medicines
School of Pharmaceutical Sciences
Peking University

100191 Beijing

China

Telefon: +86 10 82 80 51 06

Fax: +86 10 82 80 27 24

eMail: xwyang@bjmu.edu.cn

>