Subscribe to RSS
DOI: 10.1055/s-0031-1289710
Convenient Preparation of Halo-1,3-thiazoles: Important Building Blocks for Materials and Pharmaceutical Synthesis
Publication History
Publication Date:
16 February 2012 (online)

Abstract
Convenient, scalable and high-yielding approaches to 2,5- and 2,4-dibromo-1,3-thiazole are reported that offer significant improvements over previously reported approaches. 2,5-Dibromo-1,3-thiazole was generated in two steps from commercially inexpensive 2-amino-1,3-thiazole, whereas 2,4-dibromo-1,3-thiazole was generated in a single step from commercially inexpensive 1,3-thiazolidine-2,4-dione. As part of this study, convenient approaches to 2-bromo- and 2-iodo-1,3-thiazole were also developed.
Key words
halogenation - bromine - iodine - 1,3-thiazole - heterocycles
- For reviews of applications involving thiophene-containing compounds, see, for example:
- 1a 
             
            Campaigne E. In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW. Pergamon Press; Oxford: 1984. p.863Reference Ris Wihthout Link
- 1b 
             
            Russell DK.Press JB. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.679Reference Ris Wihthout Link
- 1c 
             
            Schatz J. In Science of Synthesis Vol. 9:Maas G. Thieme; Stuttgart: 2000. p.422Reference Ris Wihthout Link
- For reviews of applications involving 1,3-thiazole-containing compounds, see, for example:
- 2a 
             
            Dondoni A.Merino P. In Comprehensive Heterocyclic Chemistry II Vol. 3:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.373Reference Ris Wihthout Link
- 2b 
             
            Kikelj D.Urleb U. In Science of Synthesis Vol. 11:Schaumann E. Thieme; Stuttgart: 2000. p.627Reference Ris Wihthout Link
- 3 
             
            Limberakis C.Mullins RJ.Azman AM. In Palladium in Heterocyclic Chemistry 2nd ed.:Li JJ.Gribble GW. Elsevier; Oxford: 2007. p.251 (thiophenes) and 345 (1,3-thiazoles)Reference Ris Wihthout Link
- 4 For a recent review, see:  
            Seed A. Chem. Soc. Rev. 2007, 36: 2046Reference Ris Wihthout Link
- For a summary of available approaches to the preparation of halothiophenes, see, for example:
- 5a 
             
            Rajappa S. In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW. Pergamon Press; Oxford: 1984. p.765Reference Ris Wihthout Link
- 5b 
             
            Rajappa S.Natekar MV. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.502Reference Ris Wihthout Link
- 5c 
             
            Gronowitz S.Hörnfeldt AB. Thiophenes: Best Synthetic Methods. Elsevier Ltd.; Oxford: 2004.Reference Ris Wihthout Link
- 6a 
             
            Ganapathi K.Venkataraman A. Proc. Indian Acad. Sci., Sect. A 1945, 22: 362Reference Ris Wihthout Link
- 6b Others have obtained 70% yield
            using this procedure, see:  
            van Zwieten PA.Huisman HO. Recl. Trav. Chim. Pays-Bas 1962, 554Reference Ris Wihthout Link
- 7 The most attractive literature approach
            to 2-iodo-1,3-thiazole proceeds from inexpensive 2-amino-1,3-thiazole
            in 40% yield, see:  
            Neenan TX.Whitesides GM. J. Org. Chem. 1988, 53: 2489Reference Ris Wihthout Link
- 8a  
            2-Bromo-1,3-thiazole is an article of commerce (e.g., $118/mol from Oakwood Products, Inc. as of the submission date of this paper). Reference Ris Wihthout Link
- 8b  
            The most attractive literature approach to 2-bromo-1,3-thiazole proceeds from commercially inexpensive 2-amino-1,3-thiazole ($17/mol from Alfa Aesar) in 75% yield.6a Use of 2-amino-1,3-thiazole purchased from Acros Organics resulted in an isolated yield of only 40%, whereas 2-amino-1,3-thiazole purchased from Alfa Aesar gave 86% yield. Removal of the copper salts by filtration through Celite, followed by extraction of the filtrate, resulted in a 7% decrease in isolated yield of 2-bromo-1,3-thiazole compared to steam distillation of the crude material. Alternate approaches to 2-bromo-1,3-thiazole have also been reported. See, for example: Reference Ris Wihthout Link
- 8c 
             
            Boga C.Vecchio ED.Forlani L.Todesco PE.
 J. Organomet. Chem. 2000, 601: 233 (80% GC-MS yield from expensive 1,3-thiazole)Reference Ris Wihthout Link
- 8d 
             
            Wibaut JP.Jansen HE. Recl. Trav. Chim. Pays-Bas 1934, 53: 77 (20% yield from 2-amino-1,3-thiazole)Reference Ris Wihthout Link
- 9a  
            2-Iodo-1,3-thiazole does not appear to be commercially available Reference Ris Wihthout Link
- 9b 2-Iodo-1,3-thiazole has
            also been prepared from 2-trimethylstannyl-1,3-thiazole in excellent
            yield (90%), see:  
            Dondoni A.Mastellari AR.Medici A.Negrini E.Pedrini P. Synthesis 1986, 757Reference Ris Wihthout Link
- 9c Another high-yielding
            approach to 2-iodo-1,3-thiazole, proceeding from expensive 1,3-thiazole
            via an experimentally less convenient 2-metalation and iodination
            strategy has also been reported. See:  
            Shilai M.Kondo Y.Sakamoto T.
 J. Chem. Soc., Perkin Trans. 1 2001, 442Reference Ris Wihthout Link
- 10a 
             
            Clark RF.Zhang T.Wang X.Wang R.Zhang X.Camp HS.Beutel BA.Sham HL.Gu YG. Bioorg. Med. Chem. Lett. 2007, 17: 1961Reference Ris Wihthout Link
- 10b 
             
            Clark RF.Zhang T.Xin Z.Liu G.Wang Y.Hansen TM.Wang X.Wang R.Zhang X.Frevert EU.Camp HS.Beutel BA.Sham HL.Gu YG. Bioorg. Med. Chem. Lett. 2006, 16: 6078Reference Ris Wihthout Link
- 10c 
             
            Gu YG.Weitzberg M.Clark RF.Xu X.Li Q.Lubbers NL.Yang Y.Beno DWA.Widomski DL.Zhang T.Hansen TM. J. Med. Chem. 2007, 50: 1078Reference Ris Wihthout Link
- 10d 
             
            Gu YG.Weitzberg M.Clark RF.Xu X.Li Q.Zhang T.Hansen TM.Liu G.Xin Z.Wang X.Wang R.McNally T.Camp H.Beutel BA.Sham HL. J. Med. Chem. 2006, 49: 3770Reference Ris Wihthout Link
- 10e 
             
            Berry CR.Zificsak CA.Gibbs AC.Hlasta DJ. Org. Lett. 2007, 9: 4099Reference Ris Wihthout Link
- 11a 
             
            Lee C.-H.Yamamoto T. Mol. Cryst. Liq. Cryst. 2001, 363: 77Reference Ris Wihthout Link
- 11b 
             
            Takihana Y.Shiotsuki M.Sanda F.Masuda T. Macromolecules 2004, 37: 7578Reference Ris Wihthout Link
- 12a 
             
            Dondoni A.Fogagnolo M.Medidci A.Negrini E. Synthesis 1987, 185Reference Ris Wihthout Link
- 12b 
             
            Mitschke U.Osteritz EM.Debärdemaeker T.Sokolowski M.Bäuerle P. Chem. Eur. J. 1998, 4: 2211Reference Ris Wihthout Link
- 12c 
             
            Stanetty P.Schnurch M.Mihovilovic MD. J. Org. Chem. 2006, 71: 3754Reference Ris Wihthout Link
- 13a 
             
            Gronowitz S.Peters D. Heterocycles 1990, 30: 645Reference Ris Wihthout Link
- 13b 
             
            Bey E.Marchais-Oberwinkler S.Werth R.Negri M.Al-Soud YA.Kruchten P.Oster A.Frotscher M.Birk B.Hartmann RW. J. Med. Chem. 2008, 51: 6725Reference Ris Wihthout Link
- 13c 
             
            Strotman NA.Chobanian HR.He J.Guo Y.Dormer PG.Jones CM.Steves JE. J. Org. Chem. 2010, 75: 1733Reference Ris Wihthout Link
- 14 
             
            Gol’dfarb YL.Gromova GP.Belen’kii LI. Chem. Heterocycl. Compd. (Engl. Transl.) 1986, 22: 663Reference Ris Wihthout Link
- 15a 
             
            Beyerman HC.Berben PH.Bontekoe JS. Recl. Trav. Chim. Pays-Bas 1954, 73: 325Reference Ris Wihthout Link
- 15b 
             
            Roussel P.Metzger J. Bull. Soc. Chim. Fr. 1962, 2075Reference Ris Wihthout Link
- 17 
             
            English JP.Clark JH.Clapp JW.Seeger D.Ebel RH. J. Am. Chem. Soc. 1946, 68: 453Reference Ris Wihthout Link
- 18 
             
            Nußbaumer T.Neidlein R. Heterocycles 2000, 52: 349Reference Ris Wihthout Link
- 19a 
             
            Ammer C.Bach T. Chem. Eur. J. 2010, 16: 14083Reference Ris Wihthout Link
- 19b 
             
            Dondoni A.Fantin G.Fogagnolo M.Medici A.Pedrini P. J. Org. Chem. 1988, 53: 1748Reference Ris Wihthout Link
- 19c 
             
            Gebauer J.Arseniyadis S.Cossy J. Org. Lett. 2007, 9: 3425Reference Ris Wihthout Link
- 19d 
             
            Huang S.-T.Gordon DM. Tetrahedron Lett. 1998, 39: 9335Reference Ris Wihthout Link
- 19e 
             
            Karama U.Hoefle G. Eur. J. Org. Chem. 2003, 1042Reference Ris Wihthout Link
- 19f 
             
            Kelly TR.Lang F. Tetrahedron Lett. 1995, 36: 9293Reference Ris Wihthout Link
- 19g 
             
            Kovalenko VN.Sokolov NA.Kulinkovich OG. Russ. J. Org. Chem. 2010, 46: 1702Reference Ris Wihthout Link
- 19h 
             
            Moulin E.Nevado C.Gagnepain J.Kelter G.Fiebig H.-H.Fürstner A. Tetrahedron 2010, 66: 6421Reference Ris Wihthout Link
- 19i 
             
            Nickson TE.
 J. Fluorine Chem. 1991, 55: 173Reference Ris Wihthout Link
- 19j 
             
            Shao J.Panek JS. Org. Lett. 2004, 6: 3083Reference Ris Wihthout Link
- 19k 
             
            Siméon FG.Brown AK.Zoghbi SS.Patterson VM.Innis RB.Pike VW.
 J. Med. Chem. 2007, 50: 3256Reference Ris Wihthout Link
- 19l 
             
            Ung AT.Pyne SG. Tetrahedron: Asymmetry 1998, 9: 1395Reference Ris Wihthout Link
- 19m 
             
            Boudet N.Sase S.Sinha P.Liu C.-Y.Krasovskiy A.Knochel P. J. Am. Chem. Soc. 2007, 129: 12358Reference Ris Wihthout Link
- 19n 
             
            Gross S.Heuser S.Ammer C.Heckmann G.Bach T. Synthesis 2011, 199Reference Ris Wihthout Link
- 19o 
             
            Delgado O.Heckmann G.Müller HM.Bach T. J. Org. Chem. 2006, 71: 4599Reference Ris Wihthout Link
- 19p 
             
            Spieß A.Heckmann G.Bach T. Synlett 2004, 131Reference Ris Wihthout Link
- 19q 
             
            Nicolaou KC.He Y.Roschangar F.King NP.Vourloumis D.Li T. Angew. Chem. Int. Ed. 1998, 37: 84Reference Ris Wihthout Link
- 19r 
             
            Nicolaou KC.King NP.Finlay MRV.He Y.Roschangar F.Vourloumis D.Vallberg H.Sarabia F.Ninkovic S.Hepworth D. Bioorg. Med. Chem. 1999, 7: 665Reference Ris Wihthout Link
- 19s 
             
            Martin T.Laguerre C.Hoarau C.Marsais F. Org. Lett. 2009, 11: 3690Reference Ris Wihthout Link
- 20a 
             
            Athmani S.Bruce A.Iddon B. J. Chem. Soc., Perkin Trans. 1 1992, 215Reference Ris Wihthout Link
- 20b 
             
            Kienle M.Dunst C.Knochel P. Org. Lett. 2009, 11: 5158Reference Ris Wihthout Link
- 20c 
             
            Dunst C.Kienle M.Knochel P. Synthesis 2010, 2313Reference Ris Wihthout Link
- 20d 
             
            Nicolaou KC.Sasmal PK.Rassias G.Reddy MV.Altmann K.-H.Wartmann M.O’Brate A.Giannakakou P. Angew. Chem. Int. Ed. 2003, 42: 3515Reference Ris Wihthout Link
- 20e 
             
            Palmer JT.Bryant C.Wang D.-X.Davis DE.Setti EL.Rydzewski RM.Venkatraman S.Tian Z.-Q.Burrill LC.Mendonca RV.Springman E.McCarter J.Chung T.Cheung H.Janc J. W.McGrath M.Somoza J. R.Enriquez P.Yu Z. W.Strickley R. M.Liu L.Venuti M. C.Percival M. D.Falgueyret J.-P.Prasit P.Oballa R.Riendeau D.Young R. N.Wesolowski G.Rodan S. B.Johnson C.Kimmel D. B.Rodan G. J. Med. Chem. 2005, 48: 7520Reference Ris Wihthout Link
- 20f 
             
            Satoh A.Nagatomi Y.Hirata Y.Ito S.Suzuki G.Kimura T.Maehara S.Hikichi H.Satow A.Hata M.Ohta H.Kawamoto H. Bioorg. Med. Chem. Lett. 2009, 19: 5464Reference Ris Wihthout Link
- 21a 
             
            Bach T.Heuser S. Tetrahedron Lett. 2000, 41: 1707Reference Ris Wihthout Link
- 21b 
             
            Bach T.Heuser S. Angew. Chem. Int. Ed. 2001, 40: 3184Reference Ris Wihthout Link
- 21c 
             
            Gebauer J.Arseniyadis S.Cossy J. Eur. J. Org. Chem. 2008, 2701Reference Ris Wihthout Link
- 22a 
             
            Bach T.Heuser S. J. Org. Chem. 2002, 67: 5789Reference Ris Wihthout Link
- 22b 
             
            Cosford NDP.Tehrani L.Roppe J.Schweiger E.Smith ND.Anderson J.Bristow L.Brodkin J.Jiang X.McDonald I.Rao S.Washburn M.Varney M. A.
 J. Med. Chem. 2003, 46: 204Reference Ris Wihthout Link
- 23a 
             
            Delgado O.Martin Müller H.Bach T. Chem. Eur. J. 2008, 14: 2322Reference Ris Wihthout Link
- 23b 
             
            Hoffman TJ.Dash J.Rigby JH.Arseniyadis S.Cossy J. Org. Lett. 2009, 11: 2756Reference Ris Wihthout Link
- 24 
             
            Wellmar U.Hörnfeldt A.-B.Gronowitz S. J. Heterocycl. Chem. 1995, 32: 1159Reference Ris Wihthout Link
- 25 
             
            Le Flohic A.Meyer C.Cossy J. Tetrahedron 2006, 62: 9017Reference Ris Wihthout Link
- 27 
             
            Kato Y.Okada S.Tomimoto K.Mase T. Tetrahedron Lett. 2001, 42: 4849Reference Ris Wihthout Link
- 28 
             
            Katritzky AR.Laurenzo KS.Relyea DI. Can. J. Chem. 1988, 66: 1617Reference Ris Wihthout Link
- 29 
             
            L’Helgoual’ch J.-M.Seggio A.Chevallier F.Yonehara M.Jeanneau E.Uchiyama M.Mongin F. J. Org. Chem. 2008, 73: 177Reference Ris Wihthout Link
- 30 
             
            Klein G.Prijs B. Helv. Chim. Acta 1954, 37: 2057Reference Ris Wihthout Link
- 31 
             
            Reynaud P.Robba M.Moreau RC. Bull. Soc. Chim. Fr. 1962, 1735Reference Ris Wihthout Link
References
2-Amino-5-bromo-1,3-thiazole is commercially available ($3509/mol from Accela ChemBio, Inc.)
26POBr3 is commercially available ($766/mol from Alfa Aesar).
 
    