Synlett 2011(20): 2985-2990  
DOI: 10.1055/s-0031-1289900
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Reactions of Nitroalkenes with Nitroalkanes or Sulfur Ylides Catalyzed by Amine-Thiourea Bifunctional Polymeric Organocatalysts

Jinni Lu, Patrick H. Toy*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
Fax: +85228571586; e-Mail: phtoy@hku.hk;
Further Information

Publication History

Received 1 September 2011
Publication Date:
23 November 2011 (online)

Abstract

Non-cross-linked and cross-linked bifunctional polystyrenes bearing both amine and thiourea groups have been synthesized and used as organocatalysts in reactions between nitroalkenes and nitroalkanes or sulfur ylides. Control experiments using monofunctional polymers with only either amine or thiourea groups attached indicated that both functional groups were essential for efficient catalysis of the reactions studied. The non-cross-linked polystyrene was soluble in typical organic solvents and was used as a homogeneous catalyst, while the cross-linked polystyrene was used as a heterogeneous catalyst.

    References and Notes

  • For selected reviews regarding polymer-supported organocatalysts, see:
  • 1a Benaglia M. Puglisi A. Cozzi F. Chem. Rev.  2003,  103:  3401 
  • 1b Benaglia M. New J. Chem.  2006,  30:  1525 
  • 1c Cozzi F. Adv. Synth. Catal.  2006,  348:  1367 
  • 1d Gruttadauria M. Giacalone F. Noto R. Chem. Soc. Rev.  2008,  37:  1666 
  • 1e Kristensen TE. Hansen T. Eur. J. Org. Chem.  2010,  3179 
  • For selected reviews regarding bifunctional organocatalysts, see:
  • 2a Marcelli T. van Maarseveen JH. Hiemstra H. Angew. Chem. Int. Ed.  2006,  45:  7496 
  • 2b Kano T. Maruoka K. Chem. Commun.  2008,  5465 
  • 2c Paull DH. Abraham CJ. Scerba MT. Alden-Danforth E. Lectka T. Acc. Chem. Res.  2008,  41:  655 
  • 2d Lattanzi A. Chem. Commun.  2009,  1452 
  • 2e Liu X. Lin L. Feng X. Chem. Commun.  2009,  6145 
  • 2f Grotjahn DB. Top. Catal.  2010,  53:  1009 
  • 2g Ting A. Goss JM. McDougal NT. Schaus SE. Top. Curr. Chem.  2010,  291:  145 
  • 3 For a landmark example of a trifunctional organocatalyst, see: Ema T. Tanida D. Matsukawa T. Sakai T. Chem. Commun.  2008,  957 
  • 4a Overberger CG. Salamone JC. Yaroslavsky S.
    J. Am. Chem. Soc.  1967,  89:  6231 
  • 4b Overberger CG. Maki H. Macromolecules  1970,  3:  220 
  • 4c Overberger CG. Maki H. Macromolecules  1970,  3:  214 
  • 4d Overberger CG. Pacansky TJ. Lee J. St. Pierre T. Yaroslavsky S. J. Polym. Sci., Polym. Symp.  1974,  46:  209 
  • 4e Overberger CG. Podsiadly CJ. Bioorg. Chem.  1974,  3:  35 
  • 4f Overberger CG. Podsiadly CJ. Bioorg. Chem.  1974,  3:  16 
  • 5 For conceptually similar research using imprinted polymers, see: Sellergren B. Karmalkar RN. Shea KJ. J. Org. Chem.  2000,  65:  4009 
  • 6 Lu J. Toy PH. Chem. Rev.  2009,  109:  815 
  • 7 For a review regarding polymer-supported phosphines, see: Guino M. Hii KKM. Chem. Soc. Rev.  2007,  36:  608 
  • For our work regarding cross-linked polymer-supported phosphines, see:
  • 8a Choi MKW. He HS. Toy PH. J. Org. Chem.  2003,  68:  9831 
  • 8b Zhao LJ. He HS. Shi M. Toy PH. J. Comb. Chem.  2004,  6:  680 
  • 8c Zhao L.-J. Kwong CK.-W. Shi M. Toy PH. Tetrahedron  2005,  61:  12026 
  • 8d Leung PS.-W. Teng Y. Toy PH. Synlett  2010,  1997 
  • 8e Teng Y. Toy PH. Synlett  2011,  551 
  • For our work regarding non-cross-linked polymer-supported phosphines, see:
  • 9a Harned AM. He HS. Toy PH. Flynn DL. Hanson PR. J. Am. Chem. Soc.  2005,  127:  52 
  • 9b He HS. Yan JJ. Shen R. Zhuo S. Toy PH. Synlett  2006,  563 
  • 10 Kwong CK.-W. Huang R. Zhang M. Shi M. Toy PH. Chem. Eur. J.  2007,  13:  2369 
  • 11 For a review of alkyne to diene isomerization reactions, see: Kwong CK.-W. Fu MY. Lam CS.-L. Toy PH. Synthesis  2008,  2307 
  • 12a Kwong CK.-W. Fu MY. Law HC.-H. Toy PH. Synlett  2010,  2617 
  • 12b Fu MY. Guo J. Toy PH. Synlett  2011,  989 
  • 13a But TYS. Tashino Y. Togo H. Toy PH. Org. Biomol. Chem.  2005,  3:  970 
  • 13b Chung CWY. Toy PH. J. Comb. Chem.  2007,  9:  155 
  • 13c Lu J. Toy PH. Synlett  2011,  659 
  • 14 Lu J. Toy PH. Synlett  2011,  1723 
  • 15 Leung PS.-W. Teng Y. Toy PH. Org. Lett.  2010,  12:  4996 
  • 16 Rabalakos C. Wulff WD. J. Am. Chem. Soc.  2008,  130:  13524 
  • 17a Lu L.-Q. Cao Y.-J. Liu X.-P. An J. Yao C.-J. Ming Z.-H. Xiao W.-J. J. Am. Chem. Soc.  2008,  130:  6946 
  • 17b Lu L.-Q. Li F. An J. Zhang J.-J. An X.-L. Hua Q.-L. Xiao W.-J. Angew. Chem. Int. Ed.  2009,  48:  9542 
  • 18 For a related bifunctional mesoporous silica material, see: Puglisi A. Annunziata R. Benaglia M. Cozzi F. Gervasini A. Bertacche V. Sala MC. Adv. Synth. Catal.  2009,  351:  219 
  • 19 Toy PH. Reger TS. Janda KD. Org. Lett.  2000,  2:  2205 
  • 21 Mampreian DM. Hoveyda AH. Org. Lett.  2004,  6:  2829 
  • For the Jandajel concept, see:
  • 24a Toy PH. Janda KD. Tetrahedron Lett.  1999,  40:  6329 
  • 24b Toy PH. Reger TS. Janda KD. Aldrichimica Acta  2000,  33:  87 
  • 24c Toy PH. Reger TS. Garibay P. Garno JC. Malikayil JA. Liu G.-Y. Janda KD. J. Comb. Chem.  2001,  3:  117 
  • 24d Choi MKW. Toy PH. Tetrahedron  2004,  60:  2903 
20

See Supporting Information for details.

22

General Procedure for the Michael Addition Reactions of Nitroalkanes to Nitrostyrenes Catalyzed by Polymer 9
Nitrostyrene 13a-i (1 mmol) and catalyst 9 (0.05 mmol) were dissolved in 12 (2.6 mL, 30 mmol). The mixture was stirred at r.t. for 20 h, and then the reaction mixture was purified directly by column chromatography to afford the desired product14a-i as a mixture of stereoisomers. The syn/anti ratio was determined by ¹H NMR analysis of the crude product mixture.

23

General Procedure for the Cycloaddition Reactions Catalyzed by Polymer 9 Nitrostyrene 13a,c,d,f-l (0.5 mmol) and 9 (0.05 mmol) were dissolved in CHCl3 (1 mL). Sulfur ylide 15a-c (0.6 mmol) in CHCl3 (1 mL) was then added dropwise to the mixture. After stirring at r.t. for 24 h, the reaction mixture was purified directly by column chromatography to afford the desired products 16a-l. The anti/syn ratio was determined by ¹H NMR analysis of the crude product mixture.

25

General Procedure for the Michael Addition Reactions of Nitroalkanes to Nitrostyrenes Catalyzed by Polymer 18
To nitrostyrene 13a-i (1 mmol) in 12 (2.6 mL, 30 mmol) was added catalyst 18 (0.1 mmol). The mixture was stirred at r.t. for 15 h. The polymer was then removed by filtration, washed with THF, and the filtrate was concentrated in vacuo to remove the excess nitropropane. The syn/anti ratio was determined by ¹H NMR analysis.

26

General Procedure for the Reuse of Polymer 18
To nitrostyrene 13a (3.0 mmol) in 12 (90 mmol) was added catalyst 18 (0.3 mmol). Cycles 3-5 were performed on a 1.5 mmol scale and cycle 6 was performed on a 1.2 mmol scale. The mixture was stirred at r.t. for 15 h, and then the polymer was then removed by filtration, washed with THF, and dried. The filtrate was concentrated in vacuo to remove the excess nitropropane. The syn/anti ratio was determined by ¹H NMR analysis to be 85:15 in all cycles.