Subscribe to RSS
DOI: 10.1055/s-0031-1298368
© Georg Thieme Verlag KG Stuttgart · New York
Intestinal Transport of Pure Diester-type Alkaloids from an Aconite Extract across the Caco-2 Cell Monolayer Model
Publication History
received October 11, 2011
revised February 10, 2012
accepted February 16, 2012
Publication Date:
12 March 2012 (online)

Abstract
Aconitine (AC), mesaconitine (MA), and hypaconitine (HA) are the active alkaloids identified in aconite tuber, an important traditional Chinese medicine. The study is aimed to investigate their intestinal transport profiles and potential interaction during the intestinal absorption using the Caco-2 cell monolayer model. All three alkaloids had good permeability with P app values greater than 1 × 10−6 cm · s−1. However, AC, MA, and HA in a mixture and as an extract, in both cases with the same content of alkaloids, showed higher transport efficiency in the apical to basolateral, and lower transport efficiency in the basolateral to apical directions. Digoxin, as a P-glycoprotein (P-gp) substrate, was substantially effluxed in the basolateral to apical direction but inhibited by the three alkaloids. Furthermore, the backwards transport of MA and HA was inhibited by the P-gp inhibitor verapamil. These observations indicated that the three alkaloids may not only be P-gp inhibitors but also its substrates; they interact with each other and can potentially enhance their own bioavailability when taken concomitantly.
Key words
Aconitum species - Ranunculaceae - Aconitum alkaloids - intestinal transport - Caco-2 cell monolayer - P-glycoprotein
References
- 1
Singhuber J, Zhu M, Prinz S, Brigitte K.
Aconitum in traditional Chinese medicine: a valuable drug or an unpredictable risk?.
J Ethnopharmacol.
2009;
126
18-30
Reference Ris Wihthout Link
- 2
Kaneko R, Hattori S, Furuta S, Hamajima M, Hirata Y, Watanabe K, Seno H, Ishii A.
Sensitive analysis of aconitine, hypaconitine, mesaconitine and jesaconitine in human
body fluids and Aconitum tubers by LC/ESI-TOF-MS.
J Mass Spectrom.
2006;
41
810-814
Reference Ris Wihthout Link
- 3
Ameri A.
The effects of Aconitum alkaloids on the central nervous system.
Prog Neurobiol.
1998;
56
211-235
Reference Ris Wihthout Link
- 4
Turabekova M A, Rasulev B F, Dzhakhangirov F N, Salikhov S I.
Aconitum and Delphinium alkaloids “Drug-likeness” descriptors related to toxic mode of action.
Environ Toxicol Pharmacol.
2008;
25
310-320
Reference Ris Wihthout Link
- 5
Tang L, Ye L, Lv C, Zheng Z J, Gong Y, Liu Z Q.
Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver
microsomes and recombinant CYP450 enzymes.
Toxicol Lett.
2011;
202
47-54
Reference Ris Wihthout Link
- 6
Zhang Q L, Hu J H, Zhu Q G, Li F Q, Liu J Y, Wang D.
Development of a novel HPLC-MS/MS method for the determination of aconitine and its
application to in vitro and rat microdialysis samples.
Biomed Chromatogr.
2009;
23
692-699
Reference Ris Wihthout Link
- 7
Kaneko R, Hattori S, Furuta S, Hamajima M, Hirata Y, Watanabe K, Seno H, Ishii A.
Sensitive analysis of aconitine, hypaconitine, mesaconitine and jesaconitine in human
body fluids and Aconitum tubers by LC/ESI-TOF-MS.
J Mass Spectrom.
2006;
41
810-814
Reference Ris Wihthout Link
- 8
Chan T Y K.
Aconite poisoning.
Clin Toxicol.
2009;
47
279-285
Reference Ris Wihthout Link
- 9
Chen L, Yang J, Davey A K, Chen Y X, Wang J P, Liu X Q.
Effects of diammonium glycyrrhizinate on the pharmacokinetics of aconitine in rats
and the potential mechanism.
Xenobiotica.
2009;
39
955-963
Reference Ris Wihthout Link
- 10
He L P, Di B, Du Y X, Yan F, Su M X, Liu H Q, You L J.
Development and validation of a high-performance liquid chromatography-tandem mass
spectrometry method for the rapid simultaneous quantification of aconitine, mesaconitine,
and hypaconitine in rat plasma after oral administration of sini decoction.
J Anal Toxicol.
2009;
33
588-594
Reference Ris Wihthout Link
- 11
Hattori H, Hirata Y, Hamajima M, Kaneko R, Ito K, Ishii A, Suzuki O, Seno H.
Simultaneous analysis of aconitine, mesaconitine, hypaconitine, and jesaconitine in
whole blood by LC-MS-MS using a new polymer column.
Forensic Toxicol.
2009;
27
7-11
Reference Ris Wihthout Link
- 12
Tazawa T, Zhao H Q, Li Y, Meselhy M R, Nakamura N, Akao T, Hattori M.
A new enzyme immunoassay for aconitine and its application to quantitative determination
of aconitine levels in plasma.
Biol Pharm Bull.
2003;
26
1289-1294
Reference Ris Wihthout Link
- 13
Wang Z H, Guo D, He Y, Hu C H, Zhang J Z.
Quantitative determination of Aconitum alkaloids in blood and urine samples by high-performance liquid chromatography.
Phytochem Anal.
2004;
15
16-20
Reference Ris Wihthout Link
- 14
Wang Z H, Wen J, Xing J B, He Y.
Quantitative determination of diterpenoid alkaloids in four species of Aconitum by HPLC.
J Pharm Biomed.
2006;
40
1031-1034
Reference Ris Wihthout Link
- 15
Yang X W, Huang X, Ma L A, Wu Q, Xu W.
The intestinal permeability of neolignans from the seeds of Myristica fragrans in the Caco-2 cell monolayer model.
Planta Med.
2010;
76
1587-1591
Reference Ris Wihthout Link
- 16
Jiang S G, Zu Y G, Zhang Y, Fu Y J, Wang Z, Wang J T.
Transport of a hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel,
by human intestinal epithelial Caco-2 cells.
Planta Med.
2010;
76
1592-1595
Reference Ris Wihthout Link
- 17
Zhang J W, Zhou F, Wu X L, Gu Y, Ai H, Zheng Y T, Li Y N, Zhang X X, Hao G, Sun J G, Peng Y, Wang G J.
20(S)-Ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions.
Drug Metab Dispos.
2010;
38
2179-2187
Reference Ris Wihthout Link
- 18
Liu W L, Liu Z Q, Song F R, Liu S Y.
Specific conversion of diester-diterpenoid Aconitum alkaloids components into hydrolysis monoester-diterpenoid alkaloids components and
lipo-alkaloids compounds.
Chem J Chin Univ.
2011;
32
717-720
Reference Ris Wihthout Link
- 19
Artursson P, Karlsson J.
Correlation between oral drug absorption in humans and apparent drug permeability
coefficients in human intestinal epithelial (Caco-2) cells.
Biochem Biophys Res Commun.
1991;
175
880-885
Reference Ris Wihthout Link
- 20
Yoshida N, Takagi A, Kitazawa H, Kawakami J, Adachi I.
Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids
contained in Zanthoxyli Fructus.
Toxicol Appl Pharmacol.
2005;
209
167-173
Reference Ris Wihthout Link
- 21
De Castro W V, Mertens-Talcott S, Derendorf H, Butterweck V.
Grapefruit juice-drug interactions: Grapefruit juice and its components inhibit P-glycoprotein
(ABCB1) mediated transport of talinolol in Caco-2 cells.
J Pharm Sci.
2007;
96
2808-2817
Reference Ris Wihthout Link
- 22
Hansen T S, Nilsen O G.
Echinacea purpurea and P-glycoprotein drug transport in Caco-2 Cells.
Phytother Res.
2008;
23
86-91
Reference Ris Wihthout Link
- 23
Huang M, du Plessis J, du Preez J, Hamman J, Viljoen A.
Transport of aspalathin, a Rooibos tea flavonoid, across the skin and intestinal epithelium.
Phytother Res.
2008;
22
699-704
Reference Ris Wihthout Link
- 24
Keogh J P, Kunta J R.
Development, validation and utility of an in vitro technique for assessment of potential clinical drug-drug interactions involving P-glycoprotein.
Eur J Pharm Sci.
2006;
27
543-554
Reference Ris Wihthout Link
- 25
Liu Z Q, Jiang Z H, Liu L, Hu M.
Mechanisms responsible for poor oral bioavailability of paeoniflorin: role of intestinal
disposition and interactions with sinomenine.
Pharm Res.
2008;
23
2768-2780
Reference Ris Wihthout Link
- 26
Nahrstedt A, Butterweck V.
Lessons learned from herbal medicinal products: the example of St. John's Wort.
J Nat Prod.
2010;
73
1015-1021
Reference Ris Wihthout Link
Dr. Zhongying Liu
College of Pharmacy
Jilin University
1266 Fujin Road
Changchun 130021
China
Phone: +86 431 85 61 97 04
Fax: +86 431 85 26 22 36
Email: liuzy@jlu.edu.cn