Synthesis 2012; 44(17): 2770-2778
DOI: 10.1055/s-0032-1316589
paper
© Georg Thieme Verlag Stuttgart · New York

Investigation of an Acrylate Lynchpin Approach toward the Synthesis of Stolonidiol

Thomas Barton
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA, Fax: +1(512)4716835   Email: dsiegel@cm.utexas.edu
,
Dionicio Siegel*
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA, Fax: +1(512)4716835   Email: dsiegel@cm.utexas.edu
› Author Affiliations
Further Information

Publication History

Received: 28 March 2012

Accepted after revision: 05 June 2012

Publication Date:
27 July 2012 (online)


Abstract

An acrylate lynchpin approach toward the synthesis of stolonidiol has been investigated. To access the key macrocyclization precursor we adapted the silylcupration reaction of alkynes, facilitating attack of the intermediate vinylcuprate on a trisubstituted epoxide. With all of the required carbons of stolonidiol in place, macrocyclization reactions to provide the 11-membered ring were attempted using either a nickel-mediated cyclization of a bromo aldehyde, intercepting methyl acrylate, or an intramolecular Baylis–Hillman cyclization.

Supporting Information

 
  • References

  • 1 Yabe T, Yamada H, Shimomura M, Miyaoka H, Yamada Y. J. Nat. Prod. 2000; 63: 433
  • 2 Mori K, Iguchi K, Yamada N, Yamada Y, Inouye Y. Tetrahedron Lett. 1987; 28: 5673
  • 3 Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Nat. Med. 1998; 4: 1313
  • 4 Hohmann CF. Neurosci. Biobehav. Rev. 2003; 27: 351
  • 5 Mohapel P, Leanza G, Kokaia M, Lindvall O. Neurobiol. Aging 2005; 26: 939
  • 6 Kotani S, Yamauchi T, Teramoto T, Ogura H. Neuroscience 2006; 142: 505
  • 7 Cooper-Kuhn CM, Winkler J, Kuhn HG. J. Neurosci. Res. 2004; 77: 155
  • 8 Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP. J. Neurochem. 2002; 83: 1509
  • 9 Van Kampen JM, Eckman CB. Neuropharmacology 2010; 58: 921
  • 10 Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C. J. Psychosom. Res. 2006; 61: 311
  • 11 Miyaoka H, Baba T, Mitome H, Yamada Y. Tetrahedron Lett. 2001; 42: 9233
  • 12 Sloan LA, Baker TM, Macdonald SJ. F, Procter DJ. Synlett 2007; 3155
  • 13 Baker TM, Sloan LA, Choudhury LH, Murai M, Procter DJ. Tetrahedron: Asymmetry 2010; 21: 1246
  • 14 Maruoka K, Ooi T, Yamamoto H. J. Am. Chem. Soc. 1989; 111: 6431
  • 15 Ohira S. Synth. Commun. 1989; 19: 561
  • 16 Roth GJ, Liepold B, Müller SG, Bestmann HJ. Synthesis 2004; 59
  • 17 Wang Z.-X, Tu Y, Frohn M, Zhang J.-R, Shi Y. J. Am. Chem. Soc. 1997; 119: 11224
  • 18 Tian H, She X, Shu L, Yu H, Shi Y. J. Am. Chem. Soc. 2000; 122: 11551
  • 19 Wu X.-Y, She X, Shi Y. J. Am. Chem. Soc. 2002; 124: 8792
    • 20a Fleming I, Martinez de Marigorta E. J. Chem. Soc., Perkin Trans. 1 1999; 889
    • 20b Fleming I, Martinez de Marigorta E. Tetrahedron Lett. 1993; 34: 1201
    • 20c Fleming I, Newton TW, Roessler F. J. Chem. Soc., Perkin Trans. 1 1981; 2527
  • 21 Protection was necessary to prevent partial silyl migration during the silicon–halogen exchange.
  • 22 Available in Supporting Information.
  • 23 Xu S, Arimoto H, Uemura D. Angew. Chem. Int. Ed. 2007; 46: 5746
  • 24 Baker BA, Boskovic ZV, Lipshutz BH. Org. Lett. 2008; 10: 289
  • 25 Jeffery T. Tetrahedron 1996; 52: 10113
  • 26 Subburaj K, Montgomery J. J. Am. Chem. Soc. 2003; 125: 11210
  • 27 Radha Krishna P, Narsingam M, Srinivas Reddy P, Srinivasulu G, Kunwar AC. Tetrahedron Lett. 2005; 46: 8885
  • 28 Boeckman RK, Michalak R. J. Am. Chem. Soc. 1974; 96: 1623
  • 29 Mahoney WS, Brestensky DM, Stryker JM. J. Am. Chem. Soc. 1988; 110: 291