Synthesis 2012; 44(20): 3179-3184
DOI: 10.1055/s-0032-1316773
paper
© Georg Thieme Verlag Stuttgart · New York

Functionalized Carbodiimide Mediated Synthesis of 2,3-Disubstituted Quinazolin-4(3H)-ones via the Tandem Strategy of C-Nucleophilic Addition and Intramolecular NH-Substitution Cyclization

Hayato Nakano
Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Fax: +81(3)52614631   Email: tsaito@rs.kagu.tus.ac.jp
,
Noriki Kutsumura
Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Fax: +81(3)52614631   Email: tsaito@rs.kagu.tus.ac.jp
,
Takao Saito*
Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan   Fax: +81(3)52614631   Email: tsaito@rs.kagu.tus.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 July 2012

Accepted after revision: 18 August 2012

Publication Date:
06 September 2012 (online)


Abstract

A facile synthesis of quinazolin-4(3H)-ones possessing carbon substituents at positions 2 and 3 has been developed. Key to the synthesis is a tandem strategy involving introduction of a 2-substituent and construction of the quinazolinone framework via C-nucleophilic addition to the carbodiimide cumulenic carbon followed by intramolecular nucleophilic substitution by the newly formed NH moiety at the proximal ester group.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Rewcastle GW In Comprehensive Heterocyclic Chemistry III . Vol. 8. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; New York: 2008. Chap. 8.02, 117-272
    • 1b Undheim K, Benneche T In Comprehensive Heterocyclic Chemistry II . Vol. 6. Katritzky AR, Rees CW, Scriven EF. V. Pergamon Press; Oxford: 1998. Chap. 2
    • 1c Wattanapiromsakul C, Forster PI, Waterman PG. Phytochemistry 2003; 64: 609
    • 1d Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153

    • For reviews on quinazolinone alkaloids, see:
    • 1e Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 1f Michael JP. Nat. Prod. Rep. 2007; 24: 223
    • 1g Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 1h Reddy PS, Reddy PP, Vasantha T. Heterocycles 2003; 60: 183

    • For a review on combinatorial synthesis, see:
    • 1i Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
    • 2a Sinha S, Srivastava M. Prog. Drug Res. 1994; 43: 143
    • 2b Nagase T, Mizutani T, Ishikawa S, Sekino E, Sasaki T, Fujimura T, Ito S, Mitobe Y, Miyamoto Y, Yoshimoto R, Tanaka T, Ishihara A, Takenaga N, Tokita S, Fukami T, Sato N. J. Med. Chem. 2008; 51: 4780
    • 3a Lüth A, Löwe W. Eur. J. Med. Chem. 2008; 43: 1478
    • 3b Jiang JB, Hesson DP, Dusak BA, Dexter DL, Kang GJ, Hamel E. J. Med. Chem. 1990; 33: 1721
    • 3c Cao S.-L, Feng Y.-P, Jiang Y.-Y, Liu S.-Y, Ding G.-Y, Li R.-T. Bioorg. Med. Chem. Lett. 2005; 15: 1915
  • 4 Malamas MS, Millen J. J. Med. Chem. 1991; 34: 1492
  • 5 Lowe JA, Archer RL, Chapin DS, Cheng JB, Helweg D, Johnson JL, Koe BK, Lebel LA, Moore PF, Nielsen JA, Russo LL, Shirley JT. J. Med. Chem. 1991; 34: 624
  • 6 Habib OM, Moawad EB, Girges MM, El-Shafei AM. Boll. Chim. Farm. 1995; 134: 503
    • 7a Mannscherck A, Koller H, Stuhler G, Davis MA, Traber J. Eur. J. Med. Chem. 1984; 19: 381
    • 7b Hori M, Iemura R, Hara H, Ozaki A, Sukamoto T, Ohtaka H. Chem. Pharm. Bull. 1990; 38: 1286
    • 7c Aly MM, Mohamed YA, El-Bayouki KA. M, Basyouni WM, Abbas SY. Eur. J. Med. Chem. 2010; 45: 3365
    • 8a Kung P.-P, Casper MD, Cook KL, Wilson-Lingard L, Risen LM, Vickers TA, Ranken R, Blyn LB, Wyatt JR, Cook PD, Ecker DJ. J. Med. Chem. 1999; 42: 4705
    • 8b Bedi PM. S, Kumar V, Mahajan MP. Bioorg. Med. Chem. Lett. 2004; 14: 5211
    • 8c Meyyanathan SN, Ramu M, Suresh B. Med. Chem. Res. 2010; 19: 993
    • 9a Kobayashi S, Ueno M, Suzuki R, Ishitani H. Tetrahedron Lett. 1999; 40: 2175
    • 9b Jang CS, Fu FY, Wang CY, Huang KC, Lu G, Thou TC. Science (Washington, D.C.) 1946; 103: 59
    • 9c Chou T.-Q, Fu FY, Kao YS. J. Am. Chem. Soc. 1948; 70: 1765
  • 10 LeMahieu RA, Carson M, Nason WC, Parrish DR, Welton AF, Baruth HW, Yaremko B. J. Med. Chem. 1983; 26: 420
  • 11 Fišnerová L, Brunová B, Kocfeldová Z, Tíkalová J, Maturová E, Grimová J. Collect. Czech. Chem. Commun. 1991; 56: 2373
    • 12a Takeuchi H, Hagiwara S, Eguchi S. Tetrahedron 1989; 45: 6375
    • 12b Snider BB, Busuyek MV. Tetrahedron 2001; 57: 3301
  • 14 Yin P, Liu N, Deng Y.-X, Chen Y, Deng Y, He L. J. Org. Chem. 2012; 77: 2649

    • For selected recent literature, see:
    • 15a Yang D, Wang Y, Yang H, Liu T, Fu H. Adv. Synth. Catal. 2012; 354: 477
    • 15b Xu W, Jin Y, Liu H, Jiang Y, Fu H. Org. Lett. 2011; 13: 1274
    • 15c Xu L, Jiang Y, Ma D. Org. Lett. 2012; 14: 1150
    • 15d Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
    • 15e Watson AJ. A, Maxwell AC, Williams JM. J. Org. Biomol. Chem. 2012; 10: 240
    • 15f Fang J, Zhou J. Org. Biomol. Chem. 2012; 10: 2389

      For quinazoline synthesis, see:
    • 16a Portela-Cubillo F, Scott JS, Walton JC. J. Org. Chem. 2009; 74: 4934
    • 16b Fuwa H, Kobayashi T, Tokitoh T, Torii Y, Natsugari H. Tetrahedron 2005; 61: 4297

    • Under microwave conditions, see:
    • 16c Liu J.-F, Lee J, Dalton AM, Bi G, Yu L, Baldino CM, McElory E, Brown M. Tetrahedron Lett. 2005; 46: 1241
    • 16d Salehi P, Dabiri M, Zolfigol MA, Baghbanzadeh M. Tetrahedron Lett. 2005; 46: 7051
    • 16e Baker BR, Almaura PI. J. Org. Chem. 1962; 27: 4672
    • 16f Dabiri M, Beheshtri S, Salehi P, Mohammadi AA, Baghbanzadeh M. Synth. Commun. 2005; 35: 279
    • 16g Xue S, McKenna J, Shieh M.-C, Repic O. J. Org. Chem. 2004; 69: 6474
  • 17 Lygin AV, de Meijere A. Org. Lett. 2009; 11: 389
    • 18a von Niementowski S. J. Prakt. Chem. 1895; 51: 564
    • 18b Endicott MM, Wick E, Mercury ML, Sherrill ML. J. Am. Chem. Soc. 1946; 68: 1299
    • 18c Hisano T. Org. Prep. Proced. Int. 1973; 5: 145
    • 18d Cuny E, Lichtenthaler FW, Moser A. Tetrahedron Lett. 1980; 21: 3029
    • 18e Alexandre F.-R, Berecibar A, Besson T. Tetrahedron Lett. 2002; 43: 3911
    • 19a Larksarp C, Alper H. J. Org. Chem. 2000; 65: 2773
    • 19b Zeng F, Alper H. Org. Lett. 2008; 10: 829
    • 20a Zeng F, Alper H. Org. Lett. 2010; 12: 1188
    • 20b Zeng F, Alper H. Org. Lett. 2010; 12: 3642

      For reviews of the aza-Wittig reaction and its application in heterocyclic synthesis, see:
    • 21a Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM. Tetrahedron 2007; 63: 523
    • 21b Eguchi S. Top. Heterocycl. Chem. 2006; 6: 113
    • 21c Eguchi S. ARKIVOC 2005; (ii): 98
    • 21d Brase S, Gil C, Kneppwer K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 21e Fresneda PM, Molina P. Synlett 2004; 1
    • 21f Molina P, Vilaplana MJ. Synthesis 1994; 1197

      For the synthesis of polysubstituted dihydroquinazolines, see:
    • 22a Saito T, Tsuda K, Saito Y. Tetrahedron Lett. 1996; 37: 209
    • 22b Saito T, Tsuda K. Tetrahedron Lett. 1996; 37: 9071
    • 22c Saito T, Ote T, Shiotani M, Kataoka H, Otani T, Kutsumura N. Heterocycles 2010; 82: 305

    • For quinazolin-4-ones or quinazoline-2,4-diones, including solid-phase conditions, see:
    • 22d Wang F, Hauske JR. Tetrahedron Lett. 1997; 38: 8651
    • 22e Villalgordo JM, Obrecht D, Chucholowsky A. Synlett 1998; 1405
    • 22f Zhang W, Mayer JP, Hall SE, Weige JA. J. Comb. Chem. 2001; 3: 255
    • 22g Ding M.-W, Chen Y.-F, Huang N.-Y. Eur. J. Org. Chem. 2004; 3872
    • 22h Molina P, Tarraga A, Lopez JL, Martinez JC. J. Organomet. Chem. 1999; 584: 147

    • For palladium-catalyzed conditions, see:
    • 22i Willis MC, Snell RH, Fletcher AJ, Woodward RL. Org. Lett. 2006; 8: 5089
    • 22j Naganaboina VK, Chandra KL, Desper J, Rayat S. Org. Lett. 2011; 13: 3718
    • 23a Kumar V, Mohan C, Gupta M, Mahajan MP. Tetrahedron 2005; 61: 3533
    • 23b Kumar V, Bhargava G, Dey PD, Mahajan MP. Synthesis 2005; 3059
    • 23c Zielinski W, Kudelko A, Holt EM. Heterocycles 1998; 48: 319
    • 23d Robev SK. Tetrahedron Lett. 1983; 24: 4351
    • 24a Kotsuki H, Sakai H, Morimoto H, Suenaga H. Synlett 1995; 1993
    • 24b DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cee VJ, Chai L, Deak HL, Epstein LF, Faust T, Gallant P, Geuns-Meyer SD, Gore A, Gu Y, Henkle B, Hodous BL, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, Masse CE, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor Y.-Y, Turci SM, Welcher AA, White RD, Zhao H, Zhu L, Zhu X. J. Med. Chem. 2006; 49: 5671
  • 25 It has been reported that in the reaction of o-isothiocyana­-tobenzoates, harder organolithium reagents preferentially attacked the harder ester carbonyl, rather than the softer cumulene carbon, giving rise to 3,1-benzoxazine-2-thiones. In the reaction with the softer EtMgBr, the product from attack of the softer isothiocyanate group was preferentially formed; see: Kobayashi K, Hashimoto H, Kanbe Y, Konishi H. Tetrahedron 2011; 67: 4535
  • 26 Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 27 Malhotra S, Koul SK, Sharma RL, Anand KK, Gupta OP, Dhar KL. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1988; 27: 937