Synthesis 2013; 45(5): 625-632
DOI: 10.1055/s-0032-1318113
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of (–)-Muricatacin from Tri-O-acetyl-d-glucal

Maria González
Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain   Fax: +34(986)812262   Email: yagamare@uvigo.es   Email: ggomez@uvigo.es
,
Zoila Gándara
Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain   Fax: +34(986)812262   Email: yagamare@uvigo.es   Email: ggomez@uvigo.es
,
Gonzalo Pazos
Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain   Fax: +34(986)812262   Email: yagamare@uvigo.es   Email: ggomez@uvigo.es
,
Generosa Gómez*
Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain   Fax: +34(986)812262   Email: yagamare@uvigo.es   Email: ggomez@uvigo.es
,
Yagamare Fall*
Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain   Fax: +34(986)812262   Email: yagamare@uvigo.es   Email: ggomez@uvigo.es
› Author Affiliations
Further Information

Publication History

Received: 19 October 2012

Accepted after revision: 28 December 2012

Publication Date:
05 February 2013 (online)


Abstract

The total synthesis of (–)-muricatacin is achieved using commercially available tri-O-acetyl-d-glucal as the starting material. The structure of the intermediate chiral butenolide is established unambiguously by X-ray crystallographic analysis, which consequently leads to correction of a previous structural misassignment.

Supporting Information

 
  • References

    • 1a Yoshimitsu T, Makino T, Nagaoka H. J. Org. Chem. 2004; 69: 1993
    • 1b Ma S. Acc. Chem. Res. 2003; 36: 701
    • 1c de March P, Figueredo M, Font J, Raya J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 2003; 68: 2437
    • 1d Kang KH, Cha MY, Pae AN, Choi KI, Cho YS, Koh HY, Chung BY. Tetrahedron Lett. 2000; 41: 8137
    • 1e Ha JD, Cha JK. J. Am. Chem. Soc. 1999; 121: 10012
    • 1f Sinha SC, Keinan E. J. Org. Chem. 1999; 64: 7067
    • 1g Kabeya M, Hamada Y, Shioiri T. Tetrahedron 1997; 53: 9769
    • 1h Pearson WH, Hembre EJ. J. Org. Chem. 1996; 61: 7217
    • 2a Alali FQ, Liu X.-X, McLaughlin JL. J. Nat. Prod. 1999; 62: 504
    • 2b Zafra-Polo MC, Figadere B, Gallardo T, Tormo JR, Cortes D. Phytochemistry 1998; 48: 1087
    • 2c Koch SS. C, Chamberlin AR. Enantiomerically Pure γ-Butyrolactones in Natural Products Synthesis. In Studies in Natural Products Chemistry: Stereoselective Synthesis. Part J, Vol. 16. Atta-ur-Rahman, Ed. Elsevier Science; Amsterdam: 1995: 687-725
  • 3 Rieser MJ, Kozlowski JF, Wood KV, McLaughlin JL. Tetrahedron Lett. 1991; 32: 1137

    • For recent syntheses of muricatacin, see:
    • 4a Kumaraswamy G, Ramakrishna D, Santhakumar K. Tetrahedron: Asymmetry 2010; 21: 544
    • 4b Ghosal P, Kumar V, Shaw AK. Carbohydr. Res. 2010; 345: 41
    • 4c Barros MT, Charmier MA. J, Maycock CD, Michaud T. Tetrahedron 2009; 65: 396
    • 4d Prasad KR, Gandi V. Tetrahedron: Asymmetry 2008; 19: 2616
    • 4e Ferrié L, Reymond S, Capdevielle P, Cossy J. Synlett 2007; 2891
    • 4f Prasad KR, Anbarasan P. Tetrahedron: Asymmetry 2006; 17: 2465
    • 4g Ahmed MdM, Cui H, O’Doherty GA. J. Org. Chem. 2006; 71: 6686
    • 4h Popsavin V, Krstić I, Popsavin M, Srećo B, Benedeković G, Kojić V, Bogdanović G. Tetrahedron 2006; 62: 11044
    • 4i Quinn KJ, Isaacs AK, Arvary RA. Org. Lett. 2004; 6: 4143

    • For a recent review on the synthesis of muricatacin and related compounds, see:
    • 4j Csákÿ AG, Moreno A, Navarro C, Murcia MC. Curr. Org. Chem. 2010; 14: 15
  • 5 González M, Gándara Z, Covelo B, Gómez G, Fall Y. Tetrahedron Lett. 2011; 52: 5983
    • 7a Mori Y, Hayashi H. J. Org. Chem. 2001; 66: 8666
    • 7b Sobhana Babu B, Balasubramanian KK. J. Org. Chem. 2000; 65: 4198
    • 7c Teijeira M, Fall Y, Francisco S, Tojo E. Tetrahedron Lett. 2007; 48: 7926
  • 8 Teijeira M, Suárez P.-L, Gómez G, Terán C, Fall Y. Tetrahedron Lett. 2005; 46: 5889
  • 9 Couladouros EA, Mihou AP. Tetrahedron Lett. 1999; 40: 4861
  • 10 Rassu G, Pinna L, Spanu P, Zanardi F, Battistini L, Casiraghi G. J. Org. Chem. 1997; 62: 4513
  • 11 Crystallographic data were collected on a Bruker Smart 1000 CCD diffractometer (at CACTI, Universidade de Vigo) at 20 °C using graphite monochromated MoKα radiation (λ = 0.71073 Å), and were corrected for Lorentz and polarization effects. The frames were integrated with the Bruker SAINT software package and the data were corrected for absorption using the program SADABS. The structures were solved by direct methods using the program SHELXS97. All non-hydrogen atoms were refined with anisotropic thermal parameters by full-matrix least-squares calculations on F2 using the program SHELXL97. Hydrogen atoms were inserted at calculated positions and constrained with isotropic thermal parameters. The structural data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) with reference number, CCDC 877793. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ [fax: +44(1223)336033, e-mail: deposit@ccdc.cam.ac.uk].
  • 12 Canoa P, Gándara Z, Pérez M, Gago R, Gómez G, Fall Y. Synthesis 2010; 431
  • 13 Roberts DW, Williams DL, Bethell D. J. Chem. Soc., Perkin Trans. II 1985; 3: 389