Synthesis 2013; 45(6): 837-844
DOI: 10.1055/s-0032-1318219
paper
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Substitution on Polyfluorinated Pyridine and Pyrimidine Rings for Construction of Lanthanide Ligands

Matthieu Starck
,
Loïc Charbonnière
,
Raymond Ziessel*
Further Information

Publication History

Received: 14 December 2012

Accepted after revision: 24 January 2013

Publication Date:
14 February 2013 (online)


Abstract

The use of nucleophilic substitution of fluoride attached to azaaromatics has been used to provide polypyrazolyl-substituted pyridine and pyrimidine ligands of potential value as lanthanide ion complexants. Ester substituents on the pyrazolyl groups can be reduced to the corresponding alcohol, which can in turn be converted to the bromide, then reacted with diethyl iminodiacetate to provide highly functionalized derivatives. Base hydrolysis converts these to polyanionic ligands, although the overall process is only efficient in the case of a pyridine core. The pyridine ligand with three pyrazolate and thus six carboxylate substituents forms stable, water-soluble Eu(III) and Tb(III) complexes displaying interesting spectroscopic properties with excited state lifetimes of about 1.6 ms and 1.0 ms, respectively, and quantum yields in the 4.5% to 13% range in water. Uncoordinated carboxylate groups in these complexes can be used for their grafting to polyacrylate polymer beads.

Supporting Information

 
  • References

  • 1 Present address: IPHC, UMR 7178, Strasbourg, France.
    • 2a Ziessel R. Synthesis 1999; 1839
    • 2b Harriman A, Ziessel R. Coord. Chem. Rev. 1998; 171: 331
    • 2c Ward MD, Barigelletti F. Coord. Chem. Rev. 2001; 216: 127
    • 2d Balzani V, Credi A, Venturi M. ChemSusChem 2008; 1: 26
    • 2e Scandola F. Molecular Wires . In Encyclopedia of Supramolecular Chemistry . Vol. 1. Steed JW, Atwood JL. Taylor & Francis; New York: 2007: 925
    • 3a Castellano FN, Pomestchenko IE, Shikhova E, Hua F, Muro ML, Rajapakse N. Coord. Chem. Rev. 2006; 250: 1819
    • 3b Cummings SD. Coord. Chem. Rev. 2009; 253: 449
    • 3c Williams JA. G. Chem. Soc. Rev. 2009; 38: 1783
  • 4 Schulz M, Karnahl M, Schwalbe M, Vos JG. Coord. Chem. Rev. 2012; 256: 1682
  • 5 Kalyanasundaram K, Grätzel M. Coord. Chem. Rev. 1998; 177: 347
    • 6a Alpha B, Lehn J.-M, Mathis G. Angew. Chem. Int. Ed. 1987; 26: 266
    • 6b Mukkala V.-M, Kankare JJ. Helv. Chim. Acta 1992; 75: 1578
    • 6c Weibel N, Charbonnière LJ, Guardigli M, Roda A, Ziessel R. J. Am. Chem. Soc. 2004; 126: 4888
    • 7a Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Chem. Rev. 1999; 99: 2293
    • 7b Caravan P. Acc. Chem. Res. 2009; 42: 851
    • 7c Aime S, Delli Castelli D, Crich SG, Gianolio E, Terreno E. Acc. Chem. Res. 2009; 42: 822
    • 8a Jacques V, Desreux JF. Top. Curr. Chem. 2002; 221: 123
    • 8b Datta A, Raymond KN. Acc. Chem. Res. 2009; 42: 938
    • 8c De Leon-Rodriguez LM, Lubag AJ. M, Malloy CR, Martinez GV, Gillies RJ, Sherry AD. Acc. Chem. Res. 2009; 42: 948
    • 9a Rocklage SM, Watson AD, Carvlin MJ. In Magnetic Resonance Imaging . Stark DD, Bradley WG. 2nd ed. Mosby; St Louis, MO: 1992: Chap. 14
    • 9b Choppin GR, Schaab KM. Inorg. Chim. Acta 1996; 252: 299
    • 9c Lauffer RB. Chem. Rev. 1987; 87: 901
    • 9d Tweedle MF. In Lanthanide Probes in Life, Chemical and Earth Sciences . Bünzli J.-CG, Choppin GR. Elsevier; Amsterdam: 1989. Chap. 5
    • 9e Peters JA, Huskens J, Raber DJ. Prog. Nucl. Magn. Reson. Spectrosc. 1996; 28: 283
  • 10 Lammers H, Maton F, Pubanz D, Van Laren MW, Van Bekkum H, Merbach AE, Muller RN, Peters JA. Inorg. Chem. 1997; 36: 2527
  • 11 Brunet E, Juanes O, Sedano R, Rodriguez-Ubis J.-C. Photochem. Photobiol. Sci. 2002; 1: 613
    • 12a Richardson FS. Chem. Rev. 1982; 82: 541
    • 12b Sabbatini N, Guardigli M, Lehn J.-M. Coord. Chem. Rev. 1993; 123: 201
  • 13 Jameson DL, Goldsby KA. J. Org. Chem. 1990; 55: 4992
  • 14 Cornago P, Escolástico C, María MD. S, Claramunt RM, Fernández-Castaño C, Foces-Foces C, Fayet J.-P, Elguero J. Tetrahedron 1996; 52: 11075
    • 15a Schlosser M, Bobbio C, Rausis T. J. Org. Chem. 2005; 70: 2494
    • 15b Schlosser M, Rausis T, Bobbio C. Org. Lett. 2005; 7: 127
    • 16a Bünzli J.-C. Chem. Rev. 2010; 110: 2729
    • 16b Richardson FS. Chem. Rev. 1982; 82: 541
    • 16c Bünzli J.-C, Charbonnière LJ, Ziessel RF. J. Chem. Soc., Dalton Trans. 2000; 1917
    • 16d Charbonnière L, Weibel N, Retailleau P, Ziessel R. Chem. Eur. J. 2007; 13: 346
  • 17 Nakamaru K. Bull. Chem. Soc. Jpn. 1982; 55: 2697
  • 18 Olmsted J. J. Phys. Chem. 1979; 83: 2581
    • 19a Horrocks WD. Jr, Sudnick DR. J. Am. Chem. Soc. 1979; 101: 334
    • 19b Horrocks WD. Jr, Sudnick DR. Acc. Chem. Res. 1981; 14: 384
  • 20 Supkowski RM, Horrocks WD. Jr. Inorg. Chim. Acta 2002; 340: 44
  • 21 Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, De Sousa AS, Williams JA. G, Woods M. J. Chem. Soc., Perkin Trans. 2 1999; 493
    • 22a Nakamoto K. J. Phys. Chem. 1960; 64: 1420
    • 22b Charbonnière L, Mameri S, Kadjane P, Platas-Iglesias C, Ziessel R. Inorg. Chem. 2008; 47: 3748
    • 23a Shannon RD. Acta Crystallogr., Sect. A 1976; 32: 751
    • 23b Seitz M, Oliver AG, Raymond KN. J. Am. Chem. Soc. 2007; 129: 11153
  • 24 Rebek JJr, Feitler D. J. Am. Chem. Soc. 1974; 96: 1606
  • 25 Ziessel R, Ulrich G, Harriman A, Alamiry MA. H, Stewart B, Retailleau P. Chem. Eur. J. 2009; 15: 1359
  • 26 Starck M, Kadjane P, Bois E, Darbouret B, Incamps A, Ziessel R, Charbonnière L. Chem. Eur. J. 2011; 17: 9164
  • 27 Haas Y, Stein G. J. Phys. Chem. 1971; 75: 3668
  • 28 Valeur B. Molecular Fluorescence . Wiley-VCH; Weinheim: 2002: 161
  • 29 Charbonnière LJ, Schurhammer R, Mameri S, Wipff G, Ziessel RF. Inorg. Chem. 2005; 44: 7151
  • 30 Fatin-Rouge N, Toth E, Perret D, Backer RH, Merbach AE, Bünzli J.-CG. J. Am. Chem. Soc. 2000; 122: 10810