Planta Med 2013; 79(11): 952-958
DOI: 10.1055/s-0032-1328712
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Toxicity of Oleoresins from the Genus Copaifera in Trypanosoma cruzi: A Comparative Study

Erika Izumi
1   Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina-PR, Brazil
,
Tânia Ueda-Nakamura
2   Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá-PR, Brazil
,
Valdir F. Veiga-Júnior
3   Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus-AM, Brazil
,
Celso V. Nakamura
1   Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina-PR, Brazil
2   Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá-PR, Brazil
› Author Affiliations
Further Information

Publication History

received 13 October 2012
revised 11 May 2013

accepted 14 May 2013

Publication Date:
03 July 2013 (online)

Abstract

Several members of the genus Copaifera are present in Latin America, mainly in the Amazon region. These plants produce oleoresins that are used by indigenous people for medicinal purposes, with no distinction among species. Their medicinal properties include the treatment of cutaneous ulcerations associated with leishmaniasis and wounds caused by insect bites. However, to date, no comparative studies of the antiparasitic activity of copaiba oleoresins from different species against Trypanosoma cruzi have been published. In the present study, copaiba oleoresins from eight species were evaluated for activity against T. cruzi, including observations of cytotoxic effects in mammalian cells and parasite cells. All of the copaiba oleoresins exerted effects on all parasite life stages, especially against the replicative forms. C. martii and C. officinalis exhibited the best activity. For intracellular amastigotes, the IC50 values varied from less than 5.0 µg/mL to 10.0 µg/mL. For epimastigotes and trypomastigotes, the maximum inhibition was obtained with IC50 values of 17.0 µg/mL and 97.0 µg/mL, respectively. Oleoresins showed moderate cytotoxicity to nucleated cells, 17.5 to 32.5 µg/mL being the concentration range needed to reduce the monolayer integrity by 50 %. Toxicity to erythrocytes was observed by a hemolytic effect of 50 % above 500 µg/mL for half of the oleoresins from different species. Different oleoresins caused lipid peroxidation, increased cell-membrane permeability and changed the mitochondrial potential. Ultrastructural changes were observed after the treatment of the intracellular amastigote forms of the parasite. The toxic potential differed among oleoresins from distinct copaiba species, which can influence medicinal efficacy. This is especially relevant for people who live far from medical assistance and depend on medicinal plants.

 
  • References

  • 1 Aguilar HM, Abad-Franch F, Dias JCP, Junqueira ACV, Coura JR. Chagas disease in the Amazon region. Mem Inst Oswaldo Cruz 2007; 102: 47-55
  • 2 Coura JR. Transmission of chagasic infection by oral route in the natural history of Chagas disease. Rev Soc Bras Med Trop 2006; 39: 113-117
  • 3 Abdel-Sattar E, Maes L, Salama MM. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease. Phytother Res 2010; 24: 1322-1328
  • 4 Gachet MS, Lecaro JS, Kaiser M, Brun R, Navarrete H, Muñoz RA, Bauer R, Schühly W. Assessment of anti-protozoal activity of plants traditionally used in Ecuador in the treatment of leishmaniasis. J Ethnopharmacol 2010; 128: 184-197
  • 5 Martins-Silva RCV, Pereira JF, Lima HC. O gênero Copaifera (Leguminosae-Caesalpinioideae) na Amazônia Brasileira. Rodriguésia 2008; 59: 455-476
  • 6 Veiga-Junior VF, Pinto AC. O gênero Copaifera L. Quim Nova 2002; 25: 273-286
  • 7 Gomes NM, Rezende CM, Fontes SP, Matheus ME, Fernandes PD. Antinociceptive activity of Amazonian Copaiba oils. J Ethnopharmacol 2006; 9: 486-492
  • 8 Paiva LAF, Rao VSN, Gramosa NV, Silveira ER. Gastroprotective effect of Copaifera langsdorffii oleo-resin on experimental gastric ulcer models in rats. J Ethnopharmacol 1998; 62: 73-78
  • 9 Santos AO, Ueda-Nakamura T, Dias-Filho BP, Veiga-Junior VF, Pinto AC, Nakamura CV. Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem Inst Oswaldo Cruz 2008; 103: 277-281
  • 10 Santos AO, Ueda-Nakamura T, Dias-Filho BP, Veiga-Junior VF, Pinto AC, Nakamura CV. Effect of Brazilian copaiba oils on Leishmania amazonensis . J Ethnopharmacol 2008; 120: 204-208
  • 11 Sepulveda-Boza S, Cassels BK. Plant metabolites active against Trypanosoma cruzi . Planta Med 1996; 62: 98-105
  • 12 Uchiyama N. Antichagasic activities of natural products against Trypanosoma cruzi . J Health Sci 2009; 55: 31-39
  • 13 Camargo EP. Growth and differentiation in Trypanosoma cruzi. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop S Paulo 1964; 6: 93-100
  • 14 Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi . Rev Inst Med Trop S Paulo 1962; 4: 389-396
  • 15 Reimão JQ, Migotto AE, Kossuga MH, Berlinck RGS, Tempone AG. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei . Parasitol Res 2008; 103: 1445-1450
  • 16 Caballero-George C, Gupta MP. A quarter century of pharmacognostic research on Panamanian flora: a review. Planta Med 2011; 77: 1189-1202
  • 17 Izumi E, Ueda-Nakamura T, Veiga-Junior VF, Pinto AC, Nakamura CV. Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J Med Chem 2012; 55: 2994-3001
  • 18 Rubio J, Calderon JS, Flores A, Castro C, Cespedes CL. Trypanocidal activity of oleoresin and terpenoids isolated from Pinus oocarpa . Z Naturforsch 2005; 60: 711-716
  • 19 Alves TM, Chaves PP, Santos LM, Nagem TJ, Murta SM, Ceravolo IP, Romanha AJ, Zani CL. A diterpene from Mikania obtusata active on Trypanosoma cruzi . Planta Med 1995; 61: 85-87
  • 20 Costa FB, Albuquerque S, Vichnewski W. Diterpenes and synthetic derivatives from Viguiera aspillioides with trypanomicidal activity. Planta Med 1996; 62: 557-559
  • 21 Vieira HS, Takahashia JA, Oliveira AB, Chiaric E, Boaventura MAD. Novel derivatives of kaurenoic acid: preparation and evaluation of their trypanocidal activity. J Braz Chem 2002; 13: 151-157
  • 22 Batista R, Humberto JL, Chiari E, Oliveira AB. Synthesis and trypanocidal activity of ent-kaurane glycosides. Bioorg Med Chem 2007; 15: 381-391
  • 23 Batista R, García PA, Castro MA, Corral JMM, Speziali NL, Varotti FP, Paula RC, García-Fernández LF, Francesch A, Feliciano AS, Oliveira AB. Synthesis, cytotoxicity and antiplasmodial activity of novel ent-kaurane derivatives. Eur J Med Chem 2013; 62: 168-176
  • 24 Silva IG, Zanon VOM, Silva HHG. Larvicidal activity of Copaifera reticulata ducke oil-resin against Culex quinquefasciatus Say (Diptera: Culicidae). Neotrop Entomol 2003; 32: 729-732
  • 25 Geris R, Silva IG, Silva HHG, Barison A, Rodrigues-Filho E, Ferreira AG. Diterpenoids from Copaifera reticulata ducke with larvicidal activity against Aedes aegypti (L.) (Diptera, Culicidae). Rev Inst Med Trop S Paulo 2008; 50: 25-28
  • 26 Costa-Lotufo LV, Cunha GMA, Farias PAM, Viana GSB, Cunha KMA, Pessoa C, Moraes MO, Silveira ER, Gramosa NV, Rao VSN. The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleoresin. Toxicon 2002; 40: 1231-1234
  • 27 Pohlit AM, Rezende AR, Lopes Baldin EL, Lopes NP, Neto VF. Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases-a review. Planta Med 2011; 77: 618-630
  • 28 Hernández SM, Sánchez MS, Tarlovsky MNT. Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi . Acta Trop 2006; 98: 94-102
  • 29 Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007; 17: 422-427
  • 30 Torres-Bustos J, Farías L, Urzúa A, Mendoza L, Wilkens M. The diterpenoid ent-16-Kauren-19-oic acid acts as an uncoupler of the bacterial respiratory chain. Planta Med 2009; 75: 823-828
  • 31 Wilkens M, Alarcón C, Urzúa A, Mendoza L. Characterization of the bactericidal activity of the natural diterpene kaurenoic acid. Planta Med 2002; 68: 452-454
  • 32 Cavalcanti BC, Costa-Lotufo LV, Moraes MO, Burbano RR, Silveira ER, Cunha KMA, Rao VSN, Moura DJ, Rosa RM, Henriques JAP, Pessoa C. Genotoxicity evaluation of kaurenoic acid, a bioactive diterpenoid present in Copaiba oil. Food Chem Toxicol 2006; 44: 388-392
  • 33 Lizarte Neto FS, Tirapelli DP, Ambrosio SR, Tirapelli CR, Oliveira FM, Novais PC, Peria FM, Oliveira HF, Carlotti Junior CG, Tirapelli LF. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases. Braz J Med Biol Res 2013; 46: 71-78