Synthesis 2013; 45(19): 2649-2661
DOI: 10.1055/s-0033-1339499
feature article
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Rhodium-Catalyzed Allylation of Cyclic Imines with Potassium Allyltrifluoroborates

Hamish B. Hepburn
EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK   Fax: +44(131)6506453   Email: h.lam@ed.ac.uk
,
Nawasit Chotsaeng
EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK   Fax: +44(131)6506453   Email: h.lam@ed.ac.uk
,
Yunfei Luo
EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK   Fax: +44(131)6506453   Email: h.lam@ed.ac.uk
,
Hon Wai Lam*
EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, The King’s Buildings, West Mains Road, Edinburgh EH9 3JJ, UK   Fax: +44(131)6506453   Email: h.lam@ed.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 05 July 2013

Accepted: 12 July 2013

Publication Date:
31 July 2013 (online)


Abstract

This article presents further examples of the enantio­selective rhodium-catalyzed addition of potassium allyltrifluoro­borates to cyclic imines. A wide range of substituted allyl­-trifluoroborates are compatible with this process, and provide protected homoallylic amines with high levels of diastereo- and enantioselection. The reactions display a strong preference for carbon–carbon bond formation at the more substituted terminus of the allyl fragment of the allyltrifluoroborate, regardless of the position of the boron atom. Representative examples of manipulation of the products are also described.

Supporting Information

 
  • References


    • For relevant reviews, see:
    • 1a Tian P, Dong H.-Q, Lin G.-Q. ACS Catalysis 2011; 2: 95
    • 1b Edwards HJ, Hargrave JD, Penrose SD, Frost CG. Chem. Soc. Rev. 2010; 39: 2093
    • 1c Defieber C, Grutzmacher H, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 4482
    • 1d Johnson JB, Rovis T. Angew. Chem. Int. Ed. 2008; 47: 840
    • 1e Yoshida K, Hayashi T In Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005: 55-77
    • 1f Hayashi T, Yamasaki K. Chem. Rev. 2003; 103: 2829

      For representative examples, see:
    • 2a Takaya Y, Ogasawara M, Hayashi T, Sakai M, Miyaura N. J. Am. Chem. Soc. 1998; 120: 5579
    • 2b Takaya Y, Ogasawara M, Hayashi T. Tetrahedron Lett. 1998; 39: 8479
    • 2c Hayashi T, Ueyama K, Tokunaga N, Yoshida K. J. Am. Chem. Soc. 2003; 125: 11508
    • 2d Tokunaga N, Hayashi T. Adv. Synth. Catal. 2007; 349: 513
    • 2e Zigterman JL, Woo JC. S, Walker SD, Tedrow JS, Borths CJ, Bunel EE, Faul MM. J. Org. Chem. 2007; 72: 8870
    • 2f Shintani R, Ichikawa Y, Takatsu K, Chen F.-X, Hayashi T. J. Org. Chem. 2008; 74: 869
    • 2g Hickmann V, Kondoh A, Gabor B, Alcarazo M, Fürstner A. J. Am. Chem. Soc. 2011; 133: 13471
    • 2h Thaler T, Guo L.-N, Steib AK, Raducan M, Karaghiosoff K, Mayer P, Knochel P. Org. Lett. 2011; 13: 3182
  • 3 Crotti S, Bertolini F, Macchia F, Pineschi M. Chem. Commun. 2008; 3127

    • For rhodium-catalyzed asymmetric alkynylation using terminal alkynes, see:
    • 4a Dhondi PK, Carberry P, Choi LB, Chisholm JD. J. Org. Chem. 2007; 72: 9590
    • 4b Nishimura T, Guo X.-X, Uchiyama N, Katoh T, Hayashi T. J. Am. Chem. Soc. 2008; 130: 1576
    • 4c Nishimura T, Tsurumaki E, Kawamoto T, Guo X.-X, Hayashi T. Org. Lett. 2008; 10: 4057
    • 4d Fillion E, Zorzitto AK. J. Am. Chem. Soc. 2009; 131: 14608
    • 4e Nishimura T, Sawano T, Tokuji S, Hayashi T. Chem. Commun. 2010; 46: 6837
    • 4f Ohshima T, Kawabata T, Takeuchi Y, Kakinuma T, Iwasaki T, Yonezawa T, Murakami H, Nishiyama H, Mashima K. Angew. Chem. Int. Ed. 2011; 50: 6296
  • 5 For enantioselective rhodium-catalyzed alkynylation of enones using alkynylsilanols, see: Nishimura T, Tokuji S, Sawano T, Hayashi T. Org. Lett. 2009; 11: 3222

    • To our knowledge, enantioselective rhodium-catalyzed nucleophilic allylations are limited to additions of allylstannanes to aldehydes [where a chiral Rh(III) complex functions as a Lewis acid], and cyclizations of allylrhodium species generated by additions to allenes:
    • 7a Motoyama Y, Narusawa H, Nishiyama H. Chem. Commun. 1999; 131
    • 7b Shi M, Lei GX, Masaki Y. Tetrahedron: Asymmetry 1999; 10: 2071
    • 7c Motoyama Y, Okano M, Narusawa H, Makihara N, Aoki K, Nishiyama H. Organometallics 2001; 20: 1580
    • 7d Motoyama Y, Nishiyama H. Synlett 2003; 1883
    • 7e Motoyama Y, Sakakura T, Takemoto T, Shimozono K, Aoki K, Nishiyama H. Molecules 2011; 16: 5387
    • 7f Guo X.-X, Sawano T, Nishimura T, Hayashi T. Tetrahedron: Asymmetry 2010; 21: 1730
    • 7g Tran DN, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8181
  • 8 Luo Y, Hepburn HB, Chotsaeng N, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 8309
  • 9 For rhodium-catalyzed isomerization of alkenylboron reagents into allylboron reagents followed by in situ racemic allylation of aldehydes, see: Shimizu H, Igarashi T, Miura T, Murakami M. Angew. Chem. Int. Ed. 2011; 50: 11465
  • 10 For rhodium-catalyzed redox allylation of ketones with allyl acetate and bis(pinacolato)diboron, see: Williams FJ, Grote RE, Jarvo ER. Chem. Commun. 2012; 48: 1496

    • For catalytic enantioselective allylborations of imines, see:
    • 11a Wada R, Shibuguchi T, Makino S, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 7687
    • 11b Aydin J, Kumar KS, Sayah MJ, Wallner OA, Szabó K. J. Org. Chem. 2007; 72: 4689
    • 11c Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2007; 129: 15398
    • 11d Kanai M, Wada R, Shibuguchi T, Shibasaki M. Pure Appl. Chem. 2008; 80: 1055
    • 11e Fujita M, Nagano T, Schneider U, Hamada T, Ogawa C, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 2914
    • 11f Chakrabarti A, Konishi H, Yamaguchi M, Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 1838
    • 11g Vieira EM, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 3332
    • 11h Huang Y.-Y, Chakrabarti A, Morita N, Schneider U, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 11121
    • 11i Silverio DL, Torker S, Pilyugina T, Vieira EM, Snapper ML, Haeffner F, Hoveyda AH. Nature 2013; 494: 216

      For examples of catalytic enantioselective nucleophilic allylations of imines using allyl nucleophiles other than allylboron reagents, see:
    • 12a Nakamura H, Nakamura K, Yamamoto Y. J. Am. Chem. Soc. 1998; 120: 4242
    • 12b Gastner T, Ishitani H, Akiyama R, Kobayashi S. Angew. Chem. Int. Ed. 2001; 40: 1896
    • 12c Ferraris D, Young B, Cox C, Dudding T, Drury WJ, Ryzhkov L, Taggi AE, Lectka T. J. Am. Chem. Soc. 2001; 124: 67
    • 12d Hamada T, Manabe K, Kobayashi S. Angew. Chem. Int. Ed. 2003; 42: 3927
    • 12e Kobayashi S, Ogawa C, Konishi H, Sugiura M. J. Am. Chem. Soc. 2003; 125: 6610
    • 12f Fernandes RA, Stimac A, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 14133
    • 12g Fernandes RA, Yamamoto Y. J. Org. Chem. 2004; 69: 735
    • 12h Ogawa C, Sugiura M, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 6491
    • 12i Kiyohara H, Nakamura Y, Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2006; 45: 1615
    • 12j Kargbo R, Takahashi Y, Bhor S, Cook GR, Lloyd-Jones GC, Shepperson IR. J. Am. Chem. Soc. 2007; 129: 3846
    • 12k Tan KL, Jacobsen EN. Angew. Chem. Int. Ed. 2007; 46: 1315
    • 12l Naodovic M, Wadamoto M, Yamamoto H. Eur. J. Org. Chem. 2009; 5129
    • 12m Qiao X.-C, Zhu S.-F, Chen W.-Q, Zhou Q.-L. Tetrahedron: Asymmetry 2010; 21: 1216
    • 12n Kim SJ, Jang DO. J. Am. Chem. Soc. 2010; 132: 12168
    • 12o Gandhi S, List B. Angew. Chem. Int. Ed. 2013; 52: 2573
    • 12p Nakamura S, Hyodo K, Nakamura M, Nakane D, Masuda H. Chem. Eur. J. 2013; 19: 7304

      For enantioselective rhodium-catalyzed arylation or alkenylation of cyclic imines, see:
    • 13a Nishimura T, Noishiki A, Chit Tsui G, Hayashi T. J. Am. Chem. Soc. 2012; 134: 5056
    • 13b Luo Y, Carnell AJ, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 6762
    • 13c Wang H, Jiang T, Xu M.-H. J. Am. Chem. Soc. 2013; 135: 971
    • 13d Nishimura T, Noishiki A, Ebe Y, Hayashi T. Angew. Chem. Int. Ed. 2013; 52: 1777
    • 13e Nishimura T, Ebe Y, Fujimoto H, Hayashi T. Chem. Commun. 2013; 49: 5504
  • 14 Luo Y, Carnell AJ. Angew. Chem. Int. Ed. 2010; 49: 2750
  • 15 For reviews of chiral diene ligands, see references 1c, 1d and: Shintani R, Hayashi T. Aldrichimica Acta 2009; 42: 31
  • 16 The relative and/or absolute stereochemistries of the allylation products obtained in this investigation were assigned either by X-ray crystallography (products 8d and 13c) or by analogy with our previous work (see ref. 8). See Supporting Information for details of X-ray structures. CCDC 948887 (8d) and CCDC 948888 (13c) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif or by writing to the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk
  • 17 Seeman JI. Chem. Rev. 1983; 83: 83
  • 18 Nioche JY, Decerprit J, Festal D. Eur. J. Med. Chem. 1995; 30: 377
  • 19 The relative configuration of 24 was determined by a NOESY NMR experiment.
  • 20 Yang Q, Shang G, Gao W, Deng J, Zhang X. Angew. Chem. Int. Ed. 2006; 45: 3832
  • 21 Rommel M, Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2008; 130: 17266
  • 22 Brodsky BH, Du Bois J. J. Am. Chem. Soc. 2005; 127: 15391
  • 23 Coope JL, Khan MG, Moschner KF. US Patent US 5753599 A1, 1998
  • 24 Molander GA, Figueroa R. Org. Lett. 2005; 8: 75
  • 25 Lennox AJ. J, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2012; 51: 9385
  • 26 Olsson VJ, Sebelius S, Selander N, Szabó KJ. J. Am. Chem. Soc. 2006; 128: 4588
  • 27 Selander N, Szabó KJ. J. Org. Chem. 2009; 74: 5695
  • 28 Clary JW, Rettenmaier TJ, Snelling R, Bryks W, Banwell J, Wipke WT, Singaram B. J. Org. Chem. 2011; 76: 9602
  • 29 Yang C.-T, Zhang Z.-Q, Tajuddin H, Wu C.-C, Liang J, Liu J.-H, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528