RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2014; 25(4): 564-568
DOI: 10.1055/s-0033-1340312
DOI: 10.1055/s-0033-1340312
letter
Exploring the Use of the Suzuki Coupling Reaction in the Synthesis of 4′-Alkyl-2′-hydroxyacetophenones
Weitere Informationen
Publikationsverlauf
Received: 29. Oktober 2013
Accepted after revision: 01. November 2013
Publikationsdatum:
06. Dezember 2013 (online)

Abstract
A series of 4′-alkyl-2′-hydroxyacetophenones were prepared by Suzuki cross-coupling reactions of 4′-bromo-2′-hydroxyacetophenone. In these reactions, alkyl(trifluoro)borates were found to be better reactants than alkylboronic acids. 4′-Alkyl-2′-hydroxyacetophenones are key intermediates for the further synthesis of lipoflavonoids that are more readily incorporated into lipid bilayer membranes than flavonoids and should, therefore, have superior biological effects through increased bioavailability.
-
References
- 1 Suzuki A. J. Organomet. Chem. 1999; 576: 147
- 2 Zou G, Krishna Reddy Y, Falck JR. Tetrahedron Lett. 2001; 42: 7213
- 3 Wawrzyniak P, Heinicke J. Tetrahedron Lett. 2006; 47: 8921
- 4 Baltus CB, Press NJ, Spencer J. Synlett 2012; 23: 2477
- 5 Ehlers P, Petrosyan A, Ghochikyan TV, Saghyan AS, Neubauer A, Lochbrunner S, Langer P. Synlett 2013; 24: 359
- 6 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
- 7 So FV, Guthrie N, Chambers AF, Carroll KK. Cancer Lett. 1997; 112: 127
- 8 Pouget C, Fagnere C, Basly J.-P, Besson A.-E, Champavier Y, Habrioux G, Chulia A.-J. Pharm. Res. 2002; 19: 286
- 9 Rice-Evans CA, Miller NJ, Paganga G. Free Radical Biol. Med. 1996; 20: 933
- 10 Erlund I. Nutr. Res. (N. Y., NY U. S.) 2004; 24: 851
- 11 Dangles O. Curr. Org. Chem. 2012; 16: 692
- 12 Movileanu L, Neagoe I, Flonta ML. Int. J. Pharm. (Amsterdam, Neth.) 2000; 205: 135
- 13 Pawlikowska-Pawlęga B, Gruszecki W, Misiak L, Paduch R, Piersiak T, Zarzyka B, Pawelec J, Gawron A. Biochim. Biophys. Acta, Biomembr. 2007; 1768: 2195
- 14 Košinová P, Berka K, Wykes M, Otyepka M, Trouillas P. J. Phys. Chem. B 2012; 116: 1309
- 15 Bennett CJ, Caldwell ST, McPhail DB, Morrice PC, Duthie GG, Hartley RC. Bioorg. Med. Chem. 2004; 12: 2079
- 16 Britton RG, Horner-Glister E, Pomenya OA, Smith EE, Denton R, Jenkins PR, Steward WP, Brown K, Gescher A, Sale S. Eur. J. Med. Chem. 2012; 54: 952
- 17 Moriarty RM, Grubjesic S, Surve BC, Chandersekera SN, Prakash O, Naithani R. Eur. J. Med. Chem. 2006; 41: 263
- 18 Rao YK, Fang S-H, Tzenga Y.-M. Bioorg. Med. Chem. 2005; 13: 6850
- 19 Zhuravel MA, Nguyen ST. Tetrahedron Lett. 2001; 42: 7925
- 20 Kabalka GW, Pagni RM, Hair CM. Org. Lett. 1999; 1: 1423
- 21 Molander GA, Yun CS. Tetrahedron 2002; 58: 1465
- 22 Bumagin NA, Bykov VV. Tetrahedron 1997; 53: 14437
- 23 Tikad A, Dehbi O, Akssira M, Aadil M, Massip S, Leger JM, Jarry C, Guillaumet G, Routier S. Synthesis 2013; 45: 491
- 24 Koini EN, Avlonitis N, Martins-Duarte ES, de Souza W, Vommaro RC, Calogeropoulou T. Tetrahedron 2012; 68: 10302
- 25 El Akkaoui A, Bassoude I, Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G. Tetrahedron 2011; 67: 7128
- 26 Molander GA, Ito T. Org. Lett. 2001; 3: 393
- 27 Molander GA, Yun CS, Ribagorda M, Biolatto B. J. Org. Chem. 2003; 68: 5534
- 28 van den Hoogenband A, Lange JH. M, Terpstra JW, Koch M, Visser GM, Visser M, Korstanje TJ, Jastrzebski JT. B. H. Tetrahedron Lett. 2008; 49: 4122
- 29 Dreher SD, Lim SE, Sandrock DL, Molander GA. J. Org. Chem. 2009; 74: 3626
- 30 Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
- 31 4′-Alkyl-2′-hydroxyacetophenones; General Procedure with Alkylboronic Acids Alkylboronic acid RB(OH)2 (1.1 equiv), PdCl2·dppf (0.1 equiv), and 3 M aq NaOH (3 equiv) were added to a solution of 4′-bromo-2′-hydroxyacetophenone in THF (10 mL), and the mixture was refluxed for the appropriate time. After cooling, the mixture was diluted with water (10 mL), acidified with 3 M aq HCl, and extracted with CH2Cl2 (3 × 20 mL). The organic layers were combined, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by TLC [silica gel, hexane–EtOAc (9:1)]. All the compounds were obtained as colorless oils.
- 32 4′-Alkyl-2′-hydroxyacetophenones; General Procedure for Microwave-Assisted Synthesis with Potassium Alkyl(trifluoro)borates 4′-Bromo-2′-hydroxyacetophenone, K+ (RBF3)– (1.5 equiv), Pd(OAc)2 (0.1 equiv), RuPhos (0.2 equiv), 3 M aq NaOH (0.5 mL, 3 equiv), and toluene (5 mL) were placed in a 10 mL microwave vessel that was sealed with a pressure lock. The mixture was then subjected to microwave irradiation in an Anton Paar Monowave 300 microwave reactor at 120 °C (150 W) for 5 h.
- 33 4′-Butyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.3 Hz, 3 H), 1.35 (m, 2 H), 1.60 (m, 2 H), 2.60 (t, J = 7.5 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.6, 8.2 Hz, 1 H, H-5′), 6.79 (d, J = 1.2 Hz, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 13.9 (CH3), 22.3 (CH2), 26.5 (CH3–CO), 32.8 (CH2), 35.9 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.0 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C12H17O2: 193.1223; found: 193.1225.
- 34 4′-Decyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.27 (m, 14 H), 1.61 (m, 2 H), 2.59 (t, J = 7.5 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.3, 8.2 Hz, 1 H, H-5′), 6.79 (br s, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.7 (CH2), 26.5 (CH3–CO), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 29.6 (CH2), 30.7 (CH2), 31.9 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.1 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C18H29O2: 277.2162; found: 277.2162.
- 35 4′-Hexyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.30 (m, 6 H), 1.61 (m, 2 H), 2.59 (t, J = 7.4 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.6, 8.2 Hz, 1 H, H-5′), 6.79 (d, J = 1.3 Hz, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.6 (CH2), 26.5 (CH3–CO), 28.9 (CH2), 30.6 (CH2), 31.7 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.0 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C14H21O2: 221.1536; found: 221.1538.
- 36 2′-Hydroxy-4′-octylacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.28 (m, 10 H), 1.61 (m, 2 H), 2.59 (t, J = 6.7 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.1, 8.2 Hz, 1 H, H-5′), 6.79 (br s, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.7 (CH2), 26.5 (CH3–CO), 29.2 (2 × CH2), 29.4 (CH2), 30.7 (CH2), 31.9 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.1 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C16H25O2: 249.1849; found: 249.1850.