Synlett 2014; 25(3): 365-370
DOI: 10.1055/s-0033-1340323
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Partially N-Acetylated Chitooligosaccharides and Muropeptides

Emiliano Bedini*
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Luigi Cirillo
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Roberta Marchetti
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Sara Basso
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Diego Tufano
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Antonio Molinaro
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
,
Michelangelo Parrilli
Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 4,80126 Napoli, Italy   Fax: +39(81)674393   Email: ebedini@unina.it
› Author Affiliations
Further Information

Publication History

Received: 07 October 2013

Accepted after revision: 06 November 2013

Publication Date:
16 December 2013 (online)


Abstract

Partially N-acetylated chitooligosaccharides and muropeptides are referred to as microbial associated molecular patterns (MAMPs). To shed light on the molecular basis of their recognition by the innate immunity system of living organisms, their production in pure form is necessary. To this end, we present here the first synthetic strategy for the obtainment of a series of partially N-acetylated muropeptides as well as of a chitodisaccharide and a chitotetrasaccharide, all possessing a well-defined N-acetylation pattern.

Supporting Information

 
  • References and Notes


    • For two comprehensive reviews, see:
    • 1a Kim SK, Rajapakse N. Carbohydr. Polym. 2005; 62: 357
    • 1b Xia W, Liu P, Zhang J, Chen J. Food Hydrocolloid 2011; 25: 170
    • 2a Shibuya N, Minami E. Physiol. Mol. Plant Pathol. 2001; 59: 223
    • 2b Amborabe BE, Bonmort J, Fleurat-Lessard P, Roblin G. J. Exp. Botany 2008; 59: 2317
  • 3 Silipo A, Erbs G, Tomonori S, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman M.-A, Molinaro A. Glycobiology 2010; 20: 406
  • 4 Vollmer W, Blanot D, de Pedro MA. FEMS Microbiol. Rev. 2008; 32: 149
  • 5 Chaput C, Boneca I. Microbes Infect. 2007; 9: 637
  • 6 Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D. Science 2003; 302: 2126
  • 7 Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. J. Biol. Chem. 2007; 282: 32338
  • 8 Vollmer W. FEMS Microbiol. Rev. 2008; 32: 287
  • 9 Davis KM, Weiser JN. Infect. Immun. 2011; 79: 562
  • 10 Vollmer W, Tomasz A. Infect. Immun. 2002; 70: 7176
    • 11a Boneca IG, Dussurget O, Cabanas D, Nahori M.-A, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot J.-P, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle J.-C, Cayet N, Prévost M.-C, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 997
    • 11b Ge W, Olczak A, Forsberg LS, Maier RJ. J. Biol. Chem. 2009; 284: 6790
  • 12 Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello V, Pucci P, Lanzetta R, Parrilli M, Molinaro A, Newman M.-A, Cooper RM. Chem. Biol. 2008; 15: 438
    • 13a Tokuyasu K, Ono H, Mitsutomi M, Hayashi K, Mori Y. Carbohydr. Res. 2000; 325: 211
    • 13b Tommeraas K, Varum KM, Christensen BE, Smidsrød O. Carbohydr. Res. 2001; 333: 137
    • 13c Trombotto S, Ladavière C, Delolme F, Domard A. Biomacromolecules 2008; 9: 1731
    • 13d Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I. Carbohydr. Res. 2009; 344: 1975
    • 13e Marzaioli AM, Bedini E, Lanzetta R, Perino V, Parrilli M, De Castro C. Carbohydr. Polym. 2012; 90: 847
    • 13f Li K, Liu S, Xing R, Qin Y, Li P. Carbohydr. Polym. 2013; 92: 1730
    • 14a Kawada T, Yoneda Y. Monatsh. Chem. 2009; 140: 1245
    • 14b Barroca-Aubry N, Pernet-Poil-Chevrier A, Domard A, Trombotto S. Carbohydr. Res. 2010; 345: 1685
  • 15 Kawada T, Yoneda Y. Monatsh. Chem. 2009; 140: 1251
    • 16a Keglevic D, Kojic-Prodic B, Banic Tomisic Z, Spek AL. Carbohydr. Res. 1998; 313: 1
    • 16b Inamura S, Fukase K, Kusumoto S. Tetrahedron Lett. 2001; 42: 7613
    • 16c Kubasch N, Schmidt RR. Eur. J. Org. Chem. 2002; 2710
    • 16d Roy Chowdhury A, Siriwardena A, Boons G.-J. Tetrahedron Lett. 2002; 43: 7805
    • 16e Hesek D, Suvorov M, Morio K, Lee M, Brown S, Vakulenko SB, Mobashery S. J. Org. Chem. 2004; 69: 778
    • 16f Hesek D, Lee M, Morio K, Mobashery S. J. Org. Chem. 2004; 69: 2137
    • 16g Royv Chowdury A, Boons G.-J. Tetrahedron Lett. 2005; 46: 1675
    • 16h Roy Chowdhury A, Wolfert MA, Boons G.-J. Chembiochem 2005; 6: 2088
    • 16i Inamura S, Fujimoto Y, Kawasaki A, Shiokawa Z, Woelk E, Heine H, Lindner B, Inohara N, Kusumoto S, Fukase K. Org. Biomol. Chem. 2006; 4: 232
    • 16j Narayan RS, Van Nieuwenhze MS. Eur. J. Org. Chem. 2007; 1399
    • 16k Kawasaki A, Karasudani Y, Otsuka Y, Hasegawa M, Inohara N, Fujimoto Y, Fukase K. Chem. Eur. J. 2008; 14: 10318
    • 16l Fujimoto Y, Konishi Y, Kubo O, Hasegawa M, Inohara N, Fukase K. Tetrahedron Lett. 2009; 50: 3631
    • 16m Hesek D, Lee M, Zhang M, Noll BC, Mobashery S. J. Am. Chem. Soc. 2009; 131: 5187
    • 16n Lee M, Hesek D, Shah IM, Oliver AG, Dworkin J, Mobashery J. ChemBioChem 2010; 11: 2525
    • 16o Hadi T, Pfeffer JM, Clarke AJ, Tanner ME. J. Org. Chem. 2011; 76: 1118
    • 16p Wang N, Huang C, Hasegawa M, Inohara N, Fujimoto Y, Fukase K. ChemBioChem 2013; 14: 402
    • 17a Bedini E, Parrilli M, Unverzagt C. Tetrahedron Lett. 2002; 43: 8879
    • 17b Bedini E, Barone G, Unverzagt C, Parrilli M. Carbohydr. Res. 2004; 339: 393
    • 17c Bedini E, Carabellese A, Corsaro MM, De Castro C, Parrilli M. Carbohydr. Res. 2004; 339: 1907
    • 17d Bedini E, De Castro C, Erbs G, Mangoni L, Dow JM, Newman M.-A, Parrilli M, Unverzagt C. J. Am. Chem. Soc. 2005; 127: 2414
    • 17e Bedini E, Carabellese A, Barone G, Parrilli M. J. Org. Chem. 2005; 70: 8064
    • 17f Bedini E, Carabellese A, Schiattarella M, Parrilli M. Tetrahedron 2005; 61: 5439
    • 17g Bedini E, Esposito D, Parrilli M. Synlett 2006; 825
    • 17h Bedini E, Carabellese A, Comegna D, De Castro C, Parrilli M. Tetrahedron 2006; 62: 8474
    • 17i Comegna D, Bedini E, Parrilli M. Tetrahedron 2008; 64: 3381
    • 17j Cirillo L, Bedini E, Molinaro A, Parrilli M. Tetrahedron Lett. 2010; 51: 1117
  • 18 Cai J, Davison BE, Robin Ganellin C, Thaisrivongs S, Wibley KS. Carbohydr. Res. 1997; 300: 109
    • 19a Kinzy W, Schmidt RR. Liebigs Ann. Chem. 1985; 1537
    • 19b Wang LX, Li C, Wang Q.-C, Hui Y.-Z. Tetrahedron Lett. 1993; 34: 7763
    • 19c Yang Y, Li Y, Yu B. J. Am. Chem. Soc. 2009; 131: 12076
  • 20 See the Supporting Information for experimental procedures and characterization data of all the new products.
    • 21a Williams AL, Abad Grillo T, Comins DL. J. Org. Chem. 2002; 67: 1972
    • 21b Cipolla L, Redaelli C, Nicotra F. Lett. Drug Design Discovery 2005; 2: 291
    • 21c Cipolla L, Reis Fernandes M, Gregori M, Airoldi C, Nicotra F. Carbohydr. Res. 2007; 342: 1813
    • 21d Chen G.-H, Pan P, Chen Y, Meng X.-B, Li Z.-J. Tetrahedron 2009; 65: 5922
    • 21e Cirillo L, Silipo A, Bedini E, Parrilli M. Eur. J. Org. Chem. 2010; 4062
    • 21f Pragani R, Seeberger PH. J. Am. Chem. Soc. 2011; 133: 102
    • 21g Bedini E, Cirillo L, Parrilli M. Tetrahedron 2013; 69: 1285
  • 22 A solution of 10 (10.7 mg, 13.2 μmol) in CH2Cl2 (500 μL) was diluted with MeOH (1.0 mL), AcOH (600 μL) and H2O (500 μL). The resulting monophasic, clear solution was treated with Pearlman’s catalyst (16.0 mg, 22.8 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation. The residue was freeze-dried to give a yellowish powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 1 (3.7 mg, 66%) was obtained as a white powder: [α]D 22 +33 (c = 0.2, H2O); 1H NMR (500 MHz, D2O): δ = 4.89 (d, J = 3.0 Hz, 1 H), 4.88 (d, J = 8.5 Hz, 1 H), 3.95–3.85 (m, 6 H), 3.80–3.75 (m, 2 H), 3.71–3.63 (m, 2 H), 3.55–3.43 (m, 3 H), 3.14 (dd, J = 10.5, 8.5 Hz, 1 H), 2.04 (s, 3 H), 1.60 (sext., J = 7.0 Hz, 2 H), 0.91 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, D2O): δ = 175.1, 98.1, 97.2, 77.8, 77.0, 72.6, 70.8, 70.7, 70.2, 69.7, 61.0, 60.9, 56.5, 54.4, 22.5, 10.5; MS (MALDI TOF): m/z = 425.08 [M + H]+ .
  • 23 A mixture of 12 (62.0 mg, 62.9 μmol) and 15 (152 mg, 126 μmol) was coevaporated three times with anhydrous toluene (3 mL). The mixture was dried and then mixed with AW-300 4 Å molecular sieves under Ar. The mixture was then suspended in CH2Cl2 (7.0 mL) and cooled to –30 °C. After a few minutes stirring at –30 °C, the mixture was treated with a 0.13 M solution of TMSOTf in CH2Cl2 (39 μL, 5.07 μmol). After 1 h stirring at –30 °C, two drops of Et3N were added. The mixture was then filtered over a Celite pad and concentrated. The residue was subjected to column chromatography (14:1 to 8:1 v/v toluene–EtOAc) to afford 16 (91.7 mg, 72%) as a white foam: [α]D 22 –20.6 (c = 1.0, CH2Cl2); 1H NMR (600 MHz, CDCl3): δ = 7.37–7.25 (m, 40 H, H-Ar), 7.07 (d, J = 8.6 Hz, 2 H), 6.80 (d, J = 8.6 Hz, 2 H), 5.87 (m, 1 H), 5.31–5.27 (m, 2 H), 5.22 (dd, J = 10.4, 1.2 Hz, 1 H), 5.16 (d, J = 12.5 Hz, 1 H), 5.11–4.98 (m, 5 H), 4.93 (d, J = 3.6 Hz, 1 H), 4.82 (d, J = 10.9 Hz, 1 H), 4.78 (d, J = 10.9 Hz, 1 H), 4.70–4.57 (m, 8 H), 4.51–4.43 (m, 5 H), 4.37 (d, J = 9.4 Hz, 1 H), 4.34 (d, J = 12.2 Hz, 1 H), 4.30–4.23 (m, 3 H), 4.19 (dd, J = 14.1, 6.6 Hz, 1 H), 4.17 (d, J = 9.4 Hz, 1 H), 4.06 (dt, J = 10.3, 3.7 Hz, 1 H), 4.01–3.93 (m, 5 H), 3.87–3.80 (m, 2 H), 3.79 (s, 3 H), 3.72–3.60 (m, 5 H), 3.54 (d, J = 8.5 Hz, 1 H), 3.44–3.39 (m, 3 H), 3.29 (d, J = 7.9 Hz, 1 H), 3.25–3.08 (m, 5 H), 2.96 (d, J = 9.7 Hz, 1 H); 13C NMR (50 MHz, CDCl3): δ = 159.3, 155.2, 154.9, 154.1, 153.9, 138.6, 138.4, 138.0, 137.9, 137.7, 137.3, 135.4, 133.1, 130.1, 129.4-127.5, 118.4, 113.8, 100.9, 100.8, 100.3, 96.3, 95.6, 95.4, 83.1, 81.2, 77.6, 77.3, 75.6, 75.3, 75.0, 74.8, 74.4, 73.5, 73.1, 70.3, 69.6, 68.7, 68.6, 67.9, 67.7, 67.6, 66.4, 66.0, 56.5, 55.2, 54.2; MS (MALDI TOF): m/z = 2053.40 [M + Na]+ .
  • 24 A solution of 18 (16.3 mg, 10.9 μmol) in CH2Cl2 (400 μL) was diluted with MeOH (2.0 mL), AcOH (800 μL) and H2O (400 μL), and the resulting monophasic, clear solution was treated with Pearlman’s catalyst (16.0 mg, 22.8 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation. The residue was freeze-dried to give a white powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 2 (4.7 mg, 55%) was obtained as a white powder: [α]D 22 +2.3 (c = 0.4, H2O); 1H NMR (600 MHz, D2O): δ = 4.88 (d, J = 4.6 Hz, 1 H), 4.82 (d, J = 8.3 Hz, 2 H), 4.58 (d, J = 7.8 Hz, 1 H), 3.94–3.84 (m, 10 H), 3.79–3.75 (m, 5 H), 3.70–3.64 (m, 5 H), 3.57 (m, 2 H), 3.48 (m, 2 H), 3.16 (t, J = 8.3 Hz, 1 H), 3.14 (t, J = 8.3 Hz, 1 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 1.60 (sext., J = 7.0 Hz, 2 H), 0.91 (t, J = 7.0 Hz, 3 H); 13C NMR (150 MHz, D2O): δ = 175.4, 175.1, 102.2, 99.0, 97.4, 79.3, 77.7, 77.1, 75.8, 75.1, 73.1, 72.1, 70.9, 70.4, 69.8, 61.1, 61.0, 60.4, 56.5, 56.2, 54.5, 22.9, 22.7, 22.6, 10.6; MS (MALDI TOF): m/z = 789.13 [M + H]+ .
  • 25 Li J, Sha Y. Molecules 2008; 13: 1111
  • 26 A solution of 22 (26.6 mg, 27.1 μmol) in CH2Cl2 (300 μL) was diluted with MeOH (900 μL), AcOH (600 μL) and H2O (600 μL), and the resulting monophasic, clear solution was treated with Pearlman’s catalyst (26.6 mg, 37.9 μmol). The mixture was stirred under a H2 atmosphere at r.t. overnight, then filtered on a Celite pad. Volatiles were removed by rotoevaporation and the residue was freeze-dried to give a yellowish powder that was purified by HPLC (0.05% v/v TFA–H2O to 0.05% v/v TFA–MeOH). Pure 4 (7.5 mg, 53%) was obtained as a white powder: [α]D 22 +44 (c = 0.2, H2O); 1H NMR (600 MHz, D2O): δ = 4.93 (d, J = 3.6 Hz, 1 H), 4.82 (d, J = 8.2 Hz, 1 H), 4.40 (q, J = 7.1 Hz, 1 H), 4.37 (q, J = 8.2 Hz, 1 H), 4.06 (t, J = 9.3 Hz, 1 H), 3.96 (m, 2 H), 3.87 (m, 2 H), 3.82 (t, J = 10.2 Hz, 1 H), 3.76 (m, 2 H), 3.69 (t, J = 9.6 Hz, 1 H), 3.64 (m, 1 H), 3.51 (m, 1 H), 3.44 (m, 2 H), 3.14 (dd, J = 9.6, 8.2 Hz, 1 H), 1.99 (s, 3 H), 1.59 (sext, J = 7.4 Hz, 2 H), 1.45 (d, J = 8.2 Hz, 3 H), 1.38 (d, J = 7.1 Hz, 3 H), 0.90 (t, J = 7.4 Hz, 3 H); 13C NMR (150 MHz, D2O): δ = 177.0, 175.7, 174.5, 98.1, 97.4, 78.5, 77.4, 77.3, 75.1, 72.6, 71.3, 70.4, 61.7, 60.9, 57.2, 53.9, 49.2, 22.8, 22.5, 19.1, 17.3, 10.4; MS (MALDI TOF): m/z = 568.16 [M + H]+ .
  • 27 Kelly RC, Gebhard I, Wicnienski N. J. Org. Chem. 1986; 51: 4590
  • 28 A solution of 20 (30.9 mg, 33.9 μmol) and 23 (133 mg, 305 μmol) in DMF (1.25 mL) was treated with a 0.27 M solution of PyBOP in DMF (250 μL), then with a 0.27 M solution of HOBt in DMF (250 μL) and finally with DIPEA (65 μL, 280 μmol). After 3 h stirring at r.t., the reaction mixture was diluted with CH2Cl2 (50 mL) and washed with 0.1 M HCl (50 mL). The organic phase was collected, dried over anhydrous Na2SO4, filtered, and concentrated. After column chromatography (3:1 to 1:3 v/v n-hexane–EtOAc), pure 27 (32.4 mg, 79%) was obtained as a colorless oil: [α]D 22 +13.7 (c = 2.0, CH2Cl2); 1H NMR (600 MHz, CDCl3): δ = 7.33–7.26 (m, 20 H), 7.02 (d, J = 8.6 Hz, 2 H), 6.79 (d, J = 8.6 Hz, 2 H), 5.82 (m, 1 H), 5.23 (dd, J = 17.2, 1.5 Hz, 1 H), 5.16 (dd, J = 10.4, 1.5 Hz, 1 H), 5.11 (d, J = 12.3 Hz, 1 H), 5.08 (d, J = 12.3 Hz, 1 H), 5.07 (d, J = 3.9 Hz, 1 H), 4.80 (s, 2 H), 4.69 (d, J = 12.0 Hz, 1 H), 4.65 (d, J = 10.5 Hz, 1 H), 4.57 (dq, J = 7.9, 5.0 Hz, 1 H), 4.51 (d, J = 11.8 Hz, 1 H), 4.46–4.41 (m, 4 H), 4.36 (app. quint., J = 7.0 Hz, 1 H), 4.21 (d, J = 8.2 Hz, 1 H), 4.08 (dd, J = 13.0, 5.2 Hz, 1 H), 4.03–3.93 (m, 4 H), 3.76 (s, 3 H), 3.74 (d, J = 9.9 Hz, 1 H), 3.70–3.56 (m, 8 H), 3.29 (dd, J = 9.8, 8.3 Hz, 1 H), 3.22 (t, J = 9.0 Hz, 1 H), 3.19 (m, 1 H), 2.38–2.29 (m, 2 H), 2.23–2.15 (m, 1 H), 2.05–1.98 (m, 1 H), 1.98 (s, 3 H), 1.35 (d, J = 7.4 Hz, 3 H), 1.33 (d, J = 7.5 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ = 174.7, 173.3, 172.1, 171.5, 171.4, 159.2, 137.9, 137.7, 137.5, 137.4, 133.7, 130.0, 128.7-127.6, 117.6, 113.9, 100.8, 96.1, 83.2, 76.7, 76.4, 75.3, 74.4, 74.3, 73.4, 73.1, 71.8, 70.6, 68.5, 68.3, 67.8, 67.3, 66.4, 55.2, 53.9, 53.8, 51.9, 51.7, 49.2, 29.8, 26.8, 23.1, 19.3, 17.8; MS (MALDI TOF): m/z = 1238.19 [M + Na]+ .
  • 29 Adinolfi M, Iadonisi A, Ravidà A, Valerio S. Tetrahedron Lett. 2006; 47: 2595