Synthesis 2014; 46(12): 1603-1612
DOI: 10.1055/s-0033-1341043
paper
© Georg Thieme Verlag Stuttgart · New York

Two Sequential Multicomponent Reactions: Synthesis of Thiazolidin-4-yl-1,3,4-oxadiazoles under Mild Conditions

Fabian Brockmeyer
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
David van Gerven
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Wolfgang Saak
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Jürgen Martens*
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
› Author Affiliations
Further Information

Publication History

Received: 29 January 2013

Accepted after revision: 26 February 2014

Publication Date:
26 March 2014 (online)


Abstract

This work describes the synthesis of compounds including both thiazolidine and 1,3,4-oxadiazole heterocyclic systems. The preparation is realized following a new synthesis route consisting of two multicomponent reactions. First 3-thiazolines are formed by an Asinger four-component reaction. Conversion of these cyclic imines into α-amino-1,3,4-oxadiazoles is subsequently achieved by a three-component reaction involving (isocyanoimino)triphenyl­phosphorane and a carboxylic acid. The synthesis route is characterized by mild reaction conditions and it tolerates many functional groups. As shown by the conversion into urea derivatives the prepared α-amino-1,3,4-oxadiazoles are marked by their potential in subsequent reactions.

Supporting Information

 
  • References

  • 1 de Oliveira CS, Lira BF, Barbosa-Filho JM, Lorenzo JG. F, de Athayde-Filho PF. Molecules 2012; 17: 10192
    • 2a Patel NB, Patel JC. Sci. Pharm. 2010; 78: 171
    • 2b Sangshetti JN, Chabukswar AR, Shinde DB. Bioorg. Med. Chem. Lett. 2011; 21: 444
    • 2c Chandrakantha B, Shetty P, Nambiyar V, Isloor N, Isloor AM. Eur. J. Med. Chem. 2010; 45: 1206
    • 2d El-Emam AA, Al-Deeb OA, Al-Omar M, Lehmann J. Bioorg. Med. Chem. 2004; 12: 5107
    • 3a Kumar H, Javed SA, Khan SA, Amir M. Eur. J. Med. Chem. 2008; 43: 2688
    • 3b Husain A, Ahmad A, Alam MM, Ajmal M, Ahuja P. Eur. J. Med. Chem. 2009; 44: 3798
    • 3c Akhter M, Husain A, Azad B, Ajmal M. Eur. J. Med. Chem. 2009; 44: 2372
    • 3d Kadi AA, El-Brollosy NR, Al-Deeb OA, Habib EE, Ibrahim TM, El-Emam AA. Eur. J. Med. Chem. 2007; 42: 235
    • 4a Almasirad A, Tabatabai SA, Faizi M, Kebriaeezadeh A, Mehrabi N, Dalvandia A, Shafiee A. Bioorg. Med. Chem. Lett. 2004; 14: 6057
    • 4b Zargi A, Tabatabai SA, Faizi M, Ahadian A, Navabi P, Zanganeh V, Shafiee A. Bioorg. Med. Chem. Lett. 2005; 15: 1863
    • 4c Lankau H.-J, Unverferth K, Grunwald C, Hartenhauer H, Heinecke K, Bernöster K, Dost R, Egerland U, Rundfeldt C. Eur. J. Med. Chem. 2007; 42: 873
  • 5 Gilani SJ, Khan SA, Siddiqui N. Bioorg. Med. Chem. Lett. 2010; 20: 4762
  • 6 Huguet G, Fauran C. DE 2403357, 1974
    • 7a Savariz FC, Formagio AS. N, Barbosa VA, Foglio MA, Carvalho JE, Duarte MC. T, Filho BP. D, Sarragiotto MH. J. Braz. Chem. Soc. 2010; 21: 288
    • 7b Liu K, Lu X, Zhang H.-J, Sun J, Zhu H.-L. Eur. J. Med. Chem. 2012; 47: 473
    • 8a Johns B, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH. Bioorg. Med. Chem. Lett. 2009; 19: 1807
    • 8b Wang Z, Wang M, Yao X, Li Y, Qiao W, Geng Y, Liu Y, Wang Q. Eur. J. Med. Chem. 2012; 50: 361
    • 9a Bankar GR, Nampurath GK, Nayak PG, Bhattcharya S. Chem.–Biol. Interact. 2010; 183: 327
    • 9b Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang L, Morrison R. ACS Chem. Neurosci. 2011; 2: 730
  • 10 Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Paz OG, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Strillmock K, Witmer MV, Rowley M. J. Med. Chem. 2008; 51: 5843
  • 11 Lee SH, Seo HJ, Lee S.-H, Jung ME, Park J.-H, Yoo J, Yun H, Na J, Kang Y, Song K.-S, Kim M, Chang C.-H, Kim J, Lee J. J. Med. Chem. 2008; 51: 7216
    • 12a Taber RL, Binkley ES. J. Heterocycl. Chem. 1972; 9: 199
    • 12b Hill J In Comprehensive Heterocyclic Chemistry . Vol. 6. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 427
    • 13a Thelakkat M, Schmidt H.-W. Polym. Adv. Technol. 1998; 9: 429
    • 13b Mikroyannidis JA, Spiliopoulos IK, Kasimis TS. Macromolecules 2003; 36: 9295
    • 13c Schulz B, Kaminorz Y, Brehmer L. Synth. Met. 1997; 84: 449
  • 14 Zhu Y.-C, Lu H.-X, He D.-H, Yang Z.-R. J. Photochem. Photobiol. B. 2013; 125: 8
    • 15a Ramazani A, Rezaei A. Org. Lett. 2010; 12: 2852
    • 15b Ramazani A, Nasrabadi FZ, Ahmadi Y. Helv. Chim. Acta 2011; 94: 1024
    • 15c Ramazani A, Nasrabadi FZ, Karimi Z, Rouhani M. Bull. Korean Chem. Soc. 2011; 32: 2700
    • 15d Holagh MV, Maharramov AM, Allahverdiyev MA, Ramazani A, Ahmadi Y, Nasrabadi FZ, Souldozi A. Turk. J. Chem. 2012; 36: 671
    • 15e Ramazani A, Nasrabadi Z, Karimi Z, Rouhani M. Synth. Commun. 2013; 43: 1818

      For selected reviews on synthesis of heterocycles by multicomponent reaction, see:
    • 16a Ivachtchenko A, Ivanenkov YA, Kysil VM, Krasavin MY, Ilyin AP. Russ. Chem. Rev. 2010; 79: 787
    • 16b Jiang B, Shi F, Tu SJ. Curr. Org. Chem. 2010; 14: 357
    • 16c Akritopoulou-Zanze I. Curr. Opin. Chem. Biol. 2008; 12: 324
    • 16d Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439

      For some examples, see:
    • 17a Brauch S, Gabriel L, Westermann B. Chem. Commun. 2010; 46: 3387
    • 17b Khan AT, Khan MM. Tetrahedron Lett. 2011; 52: 3455
    • 18a Asinger F, Offermanns H. Angew. Chem. 1967; 79: 953 ; Angew. Chem., Int. Ed. Engl. 1967, 6, 907
    • 18b Keim W, Offermanns H. Angew. Chem. 2007; 119: 6116 ; Angew. Chem. Int. Ed. 2007, 46, 6010
    • 19a Martens J, Offermanns H, Scherberich P. Angew. Chem. 1981; 93: 680 ; Angew. Chem., Int. Ed. Engl. 1981, 20, 668
    • 19b Martens J, Watzke M, Johannes K. J. Heterocycl. Chem. 2010; 47: 697
    • 19c Brockmeyer F, Stalling T, Martens J. Synthesis 2012; 44: 2947
    • 19d Brockmeyer F, Kröger D, Stalling T, Ullrich P, Martens J. Helv. Chim. Acta 2012; 95: 1857
    • 20a Flemming A. Br. J. Exp. Pathol. 1929; 10: 226
    • 20b Dalhoff A. Infection 1979; 7: 294
    • 20c Dürckheimer W, Blumbach J, Lauttrell R, Scheunemann KH. Angew. Chem. 1985; 97: 183 ; Angew. Chem., Int. Ed. Engl. 1985, 24, 180
    • 20d Holzgrabe U. Pharm. Unserer Zeit 2006; 35: 410
    • 20e Elander RP. Appl. Microbiol. Biotechnol. 2003; 61: 385
    • 21a Gillies PS, Dunn CJ. Drugs 2000; 60: 333
    • 21b Lohray BB, Bhushan V, Rao BP, Madhavan GR, Murali N, Rao KN, Reddy AK, Rajesh BM, Reddy PG, Chakrabarti R, Vikramadithyan RK, Rajagopalan R, Mamidi RN. V. S, Jajoo HK, Subramanian S. J. Med. Chem. 1998; 41: 1619
    • 22a Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. J. Enzyme Inhib. Med. Chem. 2013; 28: 619
    • 22b Lu Y, Wang Z, Li C.-M, Chen J, Dalton JT, Li W, Miller DD. Bioorg. Med. Chem. 2010; 18: 477
    • 22c Liu Y, Jing F, Xu Y, Xie Y, Shi F, Fang H, Li M, Yu W. Bioorg. Med. Chem. 2011; 19: 2342
    • 22d Morand EF, Iskander MN, Skene CE. WO 2004,089,927, 2004
    • 22e Song Z.-C, Ma G.-Y, Lv P.-C, Li H.-Q, Xiao Z.-P, Zhu H.-L. Eur. J. Med. Chem. 2009; 44: 3903
  • 23 Kanojia RM, Jordan AD, Reitz AB, Macielag MJ, Zhao B. US 6809107, 2004
  • 24 Köpper S, Lindner K, Martens J. Tetrahedron 1992; 48: 10277
  • 25 Drauz K, Koban HG, Martens J, Schwarze W. Liebigs Ann. Chem. 1985; 448
  • 26 Hatam M, Tehranfar D, Martens J. Synth. Commun. 1995; 25: 1677
  • 27 Weber M, Jakob J, Martens J. Liebig Ann. Chem. 1992; 1
  • 28 Ramazani A, Souldozi A. Tetrahedron Lett. 2007; 48: 1549
  • 29 For the use of 9-fluorenylmethoxycarbonyl (Fmoc) as a protecting group, see: Carpino LA, Han GY. J. Org. Chem. 1972; 37: 3404
    • 30a Kirpotina LN, Quinn MT, Schepetkin IA, Khlebnikov AI, de Giorgio P, Lacivita E, Leopoldo M, Lucente E. Biochem. Pharmacol. 2013; 85: 404
    • 30b Arora K, Mishra RC, Tripathi RP, Srivastava AK, Walter RD. Med. Chem. Res. 2004; 13: 687
    • 30c Merritt JR, James R, Paradkar VM, Zhang C, Liu R, Liu J, Jacob B, Chiriac C, Ohlmeyer MJ, Quadros E, Wines P, Postelnek J, Hicks CM, Chen W, Kirmble EF, O’Brien L, White N, Desai H, Appel KC, Webb ML. Bioorg. Med. Chem. Lett. 2010; 20: 5477
    • 30d Xia Y, Mendenhall KG, Barsanti PA, Walter AO, Duhl D, Renhowe PA. WO 2008,063,912, 2008

      For examples on the use of isocyanates to convert amines into ureas, see:
    • 31a Chesworth R, Kunt KW, Olhawa EJ, Patane M. WO 2012,082,436, 2012
    • 31b Boiteau J.-G, Clary L, Chantalat L, Rivier M. US 2009/012129, 2009
    • 31c Wang Y, Li T, Mull E. WO 2006,062,580, 2006
    • 31d Aubert J, Clary L, Mauvais P, Rivier M, Thoreau E, Boiteau J.-G. WO 2005,108,352, 2005
  • 32 CCDC-980274 contains the supplementary crystallographic data for 3b. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 33 Fulmer GR, Miller AJ. M, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. Organometallics 2010; 29: 2176
  • 34 Masschelein KG. R, Stevens CV. Tetrahedron Lett. 2008; 49: 4336
  • 35 Bio MM, Javadi G, Song ZJ. Synthesis 2005; 19