Synthesis 2014; 46(13): 1802-1806
DOI: 10.1055/s-0033-1341227
paper
© Georg Thieme Verlag Stuttgart · New York

Nitrile Synthesis through Catalyzed Cascades Involving Acid–Nitrile Exchange

Damien Cartigny
a   Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, P. R. of China
,
Aurélie Dos Santos
b   DCSO-UMR 7652: CNRS-ENSTA-Ecole Polytechnique. Laboratoire Chimie et Procédés, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Laurent El Kaïm*
b   DCSO-UMR 7652: CNRS-ENSTA-Ecole Polytechnique. Laboratoire Chimie et Procédés, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des maréchaux, 91128 Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Laurence Grimaud*
c   Ecole Normale Supérieure, Département de chimie, CNRS-UMR 8640-UPMC, 24 rue Lhomond, 75231 Paris Cedex 05, France   Email: laurence.grimaud@ens.fr
,
Roland Jacquot*
d   Solvay Recherches & Innovation Centre de Lyon, 85 rue des frères Perret, BP62, 69192 Saint Fons Cedex, France   Email: philippe.marion@solvay.com
,
Philippe Marion*
d   Solvay Recherches & Innovation Centre de Lyon, 85 rue des frères Perret, BP62, 69192 Saint Fons Cedex, France   Email: philippe.marion@solvay.com
› Author Affiliations
Further Information

Publication History

Received: 25 February 2014

Accepted: 21 March 2014

Publication Date:
30 April 2014 (online)


Abstract

Irreversible acid–nitrile exchange reactions using both glutaronitrile and (phenylsulfonyl)acetonitrile may be catalyzed by Lewis acids. Whereas a cyclization towards imides displaces the equilibria in the reaction with dinitriles, a decarboxylation step is involved when using the (phenylsulfonyl)acetonitrile.

Supporting Information

 
  • References

    • 1a Friedrich K, Wallensfels K In The Chemistry of the Cyano Group . Rappoport Z. Wiley-Interscience; New York: 1970
    • 1b North M In Comprehensive Organic Functional Group Transformations . Vol 3. Katritzky AR, Meth-Cohn O, Rees CW, Pattenden G. Pergamon; Oxford: 1995. Chap. 18
  • 2 For a recent example see: Miyagi K, Moriyama K, Togo H. Eur. J. Org. Chem. 2013; 5886
    • 3a Gautier A. Compt. Rend. 1868; 67: 1255
    • 3b Colby CE, Dodge FO. Am. Chem. J. 1891; 13: 1
    • 3c Miller EH. J. Am. Chem. Soc. 1894; 16: 433
    • 3d Mathews JA. J. Am. Chem. Soc. 1898; 20: 648
    • 3e Loder DJ. US Patent 2 377 795, 1945 ; Chem. Abstr. 1945, 39, 25527
    • 3f Wiley RH, Guerrant WB. J. Am. Chem. Soc. 1949; 71: 981
    • 3g Toland WG, Ferstandig LL. J. Org. Chem. 1958; 23: 1350
    • 3h Becke F, Burger TF. Liebigs Ann. Chem. 1968; 716: 78
    • 3i Klein DA. J. Org. Chem. 1971; 36: 3050
    • 3j Cantillo D, Kappe CO. J. Org. Chem. 2013; 78: 10567
  • 4 Mlinarić-Majerski K, Margeta R, Veljković J. Synlett 2005; 2089

    • Cyanoacetic acid derivatives are known to spontaneously decarboxylate under 200 °C:
    • 5a Gardette D, Gramain J.-C, Seguin H, Mademont J.-C, Moreau M.-F. Synth. Commun. 1998; 28: 4257
    • 5b Belski AJ, Maiella PG, Brill TB. J. Phys. Chem. A 1999; 103: 4253
    • 6a Marion P, Jacquot R, Grimaud L, Cartigny D, El Kaïm L. Patent WO2013072466, 2013 ; Chem. Abstr. 2013, 159, 9015.
    • 6b Jacquot R, Marion P. Patent WO2011144619, 2011 ; Chem. Abstr. 2011, 155, 686476.
  • 7 Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
  • 8 Suzuki Y, Yoshino T, Moriyama K, Togo H. Tetrahedron 2011; 67: 3809
  • 9 An J, Denton R, Lewis W, Lindovska P. Tetrahedron 2012; 68: 2899
  • 10 Lerebours R, Wolf C. Org. Lett. 2007; 9: 2737
  • 11 Zhang J, Zhang Z, Wang Y, Zheng X, Wang Z. Eur. J. Org. Chem. 2008; 5112
  • 12 Zhou W, Xu J, Zhang L, Jiao N. Org. Lett. 2010; 12: 2888
  • 13 Bordwell FG, Bausch MJ, Cheng J.-P, Cripe TH, Lynch T.-Y, Mueller ME. J. Org. Chem. 1990; 55: 58
  • 14 Huang Y, Wang C, Yin W. Org. Lett. 2013; 15: 1850
  • 15 Koehler K, Roehlich C. Adv. Synth. Catal. 2010; 352: 2263