Synlett 2014; 25(10): 1425-1430
DOI: 10.1055/s-0033-1341244
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of Biaryl Ketones via tert-Butyl Isocyanide Insertion

Zhong Chen
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
,
Huaqing Duan
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
,
Xiao Jiang
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
,
Jinmei Wang
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
,
Yongming Zhu*
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
,
Shilin Yang
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. of China   Fax: +86(512)67166591   Email: zhuyongming@suda.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 February 2014

Accepted after revision: 25 March 2014

Publication Date:
08 May 2014 (online)


Abstract

A simple and efficient palladium-catalyzed carbonylative Suzuki coupling via tert-butyl isocyanide insertion has been developed, which demonstrates the utility of isocyanides in intermolecular C–C bond construction. This methodology provides a novel pathway for the synthesis of diaryl ketones in moderate to good yields. The approach is tolerant to a wide range of substrates and applicable to library synthesis. A possible reaction mechanism was proposed based on the experimental results.

Supporting Information

 
  • References and Notes

    • 1a Rouis Z, Abid N, Aouni M, Faiella L, Piaz FD, Tommasi ND, Braca A. J. Nat. Prod. 2013; 76: 979
    • 1b Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT. J. Nat. Prod. 2011; 74: 395
    • 1c Krick A, Kehraus S, Gerhauser C, Klimo K, Nieger M, Maier A, Fiebig HH, Atodiresei I, Raabe G, Fleischhauer J, Konig GM. J. Nat. Prod. 2007; 70: 353
    • 1d Deng Y, Chin YW, Chai H, Keller WJ, Kinghorn AD. J. Nat. Prod. 2007; 70: 2049
    • 1e Pecchio M, Solis PN, Lopez-Perez JL, Vasquez Y, Rodriguez N, Olmedo D, Correa M, San Feliciano A, Gupta MP. J. Nat. Prod. 2006; 69: 410
    • 1f Jabeen I, Pleban K, Rinner U, Chiba P, Ecker GF. J. Med. Chem. 2012; 55: 3261
    • 1g Oster A, Hinsberger S, Werth R, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. J. Med. Chem. 2010; 53: 8176
    • 1h Lee J, Kim SJ, Choi H, Kim YH, Lim IT, Yang H, Lee CS, Kang HR, Ahn SK, Moon SK, Kim DH, Lee S, Choi NS, Lee KJ. J. Med. Chem. 2010; 53: 6337
    • 1i Vooturi SK, Cheung CM, Rybak MJ, Firestine SM. J. Med. Chem. 2009; 52: 5020
    • 1j Gobbi S, Cavalli A, Negri M, Schewe KE, Belluti F, Piazzi L, Hartmann RW, Recanatini M, Bisi A. J. Med. Chem. 2007; 50: 3420
  • 2 Hoegberg T, Ulff B. J. Org. Chem. 1984; 49: 4209
    • 3a Song CE, Shim WH, Roh EJ, Choi JH. Chem. Commun. 2000; 1695
    • 3b Fillion E, Fishlock D, Wilsily A, Goll JM. J. Org. Chem. 2005; 70: 1316
  • 4 Karthikeyan J, Parthasarathy K, Cheng CH. Chem. Commun. 2011; 47: 10461
  • 5 Zheng HM, Ding JC, Chen JX, Liu MC, Gao WX, Wu HY. Synlett 2011; 1626
  • 6 Huang YC, Majumdar KK, Cheng CH. J. Org. Chem. 2002; 67: 1682
  • 7 Pucheault M, Sylvain DS, Genêt JP. J. Am. Chem. Soc. 2004; 126: 15356
  • 8 Pathak A, Rajput CS, Bora PS, Sharma S. Tetrahedron Lett. 2013; 54: 2149
  • 9 Wakita Y, Yasunaga T, Akita M, Kojima M. J. Organomet. Chem. 1986; 301: C17
    • 10a Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett. 1993; 34: 7595
    • 10b Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
  • 11 Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
  • 12 Vlaar T, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 13a Qiu GY. S, Ding QP, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 13b Lang S. Chem. Soc. Rev. 2013; 42: 4867

      Coupling reactions via isocyanide insertion to form intramolecular C–N bonds:
    • 14a Liu B, Li Y, Jiang H, Yin M, Huang H. Adv. Synth. Catal. 2012; 354: 2288
    • 14b Zhu C, Xie W, Falck JR. Chem. Eur. J. 2011; 17: 12591
    • 14c Van Baelen G, Kuijer S, Rycek L, Sergeyev S, Janssen E, de Kanter FJ. J, Maes BU. W, Ruijter E, Orru RV. A. Chem. Eur. J. 2011; 17: 15039
    • 14d Miura T, Nishuda Y, Morimoto M, Yamauchi M, Murakami M. Org. Lett. 2011; 13: 1429
    • 14e Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 14f Wang Y, Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
    • 14g Wang Y, Wang H, Peng J, Zhu Q. Org. Lett. 2011; 13: 4604

      Coupling reactions via isocyanide insertion to form intermolecular C–N bonds:
    • 15a Vlaar T, Ruijter E, Znabet A, Janssen E, de Kanter FJ. J, Maes BU. W, Orru RV. A. Org. Lett. 2011; 13: 6496
    • 15b Saluste CG, Whitby RJ, Furber M. Angew. Chem. Int. Ed. 2000; 39: 4156
    • 15c Boissarie PJ, Hamilton ZE, Lang S, Murphy JA, Suckling CJ. Org. Lett. 2011; 13: 6256
    • 16a Soeta T, Tamura K, Ukaji Y. Org. Lett. 2012; 14: 1226
    • 16b Fei XD, Ge ZY, Tang T, Zhu YM, Ji SJ. J. Org. Chem. 2012; 77: 10321
    • 17a Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
    • 17b Nanjo T, Tsukano C, Takemoto Y. Org. Lett. 2012; 14: 4270
    • 17c Ishiyama T, Oh-e T, Miyaura N, Suzuki A. Tetrahedron Lett. 1992; 33: 4465
  • 18 Tang T, Fei XD, Ge ZY, Chen Z, Zhu YM, Ji SJ. J. Org. Chem. 2013; 78: 3170
  • 19 General Experimental Procedure In a 15 mL sealed tube equipped with a magnetic stirring bar were added iodobenzene (1.0 mmol, 112 μL), phenylboronic acid (1.2 mmol, 146 mg), tert-butyl isocyanide (1.2 mmol, 136 μL), PdCl2 (0.03 mmol, 5 mg), Ph3P (0.06 mmol, 16 mg), K3PO4 (2.0 mmol, 424 mg), and anhydrous toluene (4.0 mL). The tube was purged with N2, and the contents were stirred at 110 °C for 4 h. After completion of the reaction as indicated by TLC, the mixture was filtered through neutral Al2O3, and the solvent was removed under vacuum. Then, the residue was stirred in THF (10 mL) and HCl (1 M, 3 mL) for 2 h. Then, the mixture was extracted with EtOAc, dried with Na2SO4, and evaporated. The residue was purified on a silica gel column using PE–EtOAc (100:1) as the eluent to give the pure product 3a. Benzophenone (3a) White solid; mp 48–50 °C. 1H NMR (300 MHz, CDCl3): δ = 7.79–7.82 (m, 4 H), 7.55–7.60 (m, 2 H), 7.45–7.49 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 196.7, 137.6, 132.4, 130.1, 128.3. ESI-MS: m/z = 183.0 [M + H]+.
  • 20 Intermediate 8 HRMS (CI): m/z calcd for C17H19N [M]+: 237.1517; found: 237.1517. HRMS (CI): m/z calcd for C13H9N [M – C4H9]+: 180.0813; found: 180.0810.