Synlett 2014; 25(11): 1626-1628
DOI: 10.1055/s-0034-1378205
letter
© Georg Thieme Verlag Stuttgart · New York

Visible Light Induced Photocatalytic Conversion of Enamines into Amides

Jing Li
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen University Town, Shenzhen 518055, P. R. of China   Fax: +86(755)26032702   Email: dzw@pkusz.edu.cn
,
Shunyou Cai
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen University Town, Shenzhen 518055, P. R. of China   Fax: +86(755)26032702   Email: dzw@pkusz.edu.cn
,
Jietao Chen
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen University Town, Shenzhen 518055, P. R. of China   Fax: +86(755)26032702   Email: dzw@pkusz.edu.cn
,
Yaohong Zhao
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen University Town, Shenzhen 518055, P. R. of China   Fax: +86(755)26032702   Email: dzw@pkusz.edu.cn
,
David Zhigang Wang*
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen University Town, Shenzhen 518055, P. R. of China   Fax: +86(755)26032702   Email: dzw@pkusz.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 March 2014

Accepted after revision: 04 May 2014

Publication Date:
05 June 2014 (online)


Abstract

A series of enamines were photocatalytically cleaved to produce amide products under simple visible-light irradiation from a 45 W household light bulb. Mechanistically, the reactions appear to involve photosensitized formation of a singlet oxygen intermediate and a subsequent [2+2] cycloaddition event.

Supporting Information

 
  • References


    • For selected recent reviews on photoredox catalysis, see:
    • 1a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 1d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 1e Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 1f Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 1g Shi L, Xia W. Chem. Soc. Rev. 2012; 21: 7687
    • 1h Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 1i Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 2a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 2b Shih H.-W, Vander Wal MN, Grange RL, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 13600
    • 2c Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
    • 2d Tucker JW, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Org. Lett. 2010; 12: 368
    • 2e Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 2f Du J, Yoon TP. J. Am. Chem. Soc. 2009; 131: 14604
    • 2g Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 2h Andrew RS, Becker JJ, Gagné MR. Angew. Chem. Int. Ed. 2010; 49: 7274
    • 2i Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
    • 2j Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
    • 2k DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 2l Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566

      For selected reviews on singlet oxygen chemistry, see:
    • 3a Kearns DR. Chem. Rev. 1971; 71: 395
    • 3b Schweitzer C, Schmidt R. Chem. Rev. 2003; 103: 1685
    • 3c Clennan EL, Pace A. Tetrahedron 2005; 61: 6665
  • 4 Hanson K, Ashford DL, Concepcion JJ, Binstead RA, Habibi S, Luo H, Glasson CR. K, Templeton JL, Meyer TJ. J. Am. Chem. Soc. 2012; 134: 16975
  • 5 Ouannes C, Wilson T. J. Am. Chem. Soc. 1968; 90: 6527
  • 6 Xia and co-workers have recently reported the oxidative C–C bond cleavage of aldehydes by visible-light photoredox catalysis in which an enamine was postulated to react with an anionic species [O2] ·to give the same intermediate A, before collapsing into formamide, see: Sun H, Yang C, Gao F, Li Z, Xia W. Org. Lett. 2013; 15: 624
  • 7 Friedrich E, Lutz W. Angew. Chem. Int. Ed. 1977; 16: 413
  • 8 Sivaguru J, Poon T, Franz R, Jockusch S, Adam W, Turro NJ. J. Am. Chem. Soc. 2004; 126: 10816

    • Our group had previously described two other methods for the preparation of amides, see:
    • 9a Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
    • 9b Zhao Y, Cai S, Li J, Wang DZ. Tetrahedron 2013; 69: 8129
    • 9c Wang X, Wang DZ. Tetrahedron 2011; 67: 3406
    • 10a Vetelino MG, Coe JW. Tetrahedron Lett. 1994; 35: 219
    • 10b Slomp GJr, Shealy YF, Johnson JL, Donia RA, Johnson BA, Holysz RP, Pederson RL, Jensen AO, Ott AC. J. Am. Chem. Soc. 1955; 77: 1216
    • 10c Foote CS, Lin JW.-P. Tetrahedron Lett. 1968; 9: 3267
    • 10d Sreekumar R, Padmakumar R. Tetrahedron Lett. 1997; 38: 5143
    • 10e Huber JE. Tetrahedron Lett. 1968; 9: 3271
    • 10f Wooten J, Savitsky GB, Jacobus J. J. Am. Chem. Soc. 1975; 97: 5027
    • 10g Harris CE, Chrisman W, Bickford SA, Lee LY, Torreblanca AE, Singaram B. Tetrahedron Lett. 1997; 38: 981