Synlett 2014; 25(13): 1869-1872
DOI: 10.1055/s-0034-1378315
letter
© Georg Thieme Verlag Stuttgart · New York

Molybdenum-Mediated Desulfurization of Thiols and Disulfides

Zhen Wang
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: kuninobu@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
b  ERATO, Japan Science and Technology Agency (JST), Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Fax: +81(3)56845206
,
Yoichiro Kuninobu*
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: kuninobu@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
b  ERATO, Japan Science and Technology Agency (JST), Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Fax: +81(3)56845206
,
Motomu Kanai*
a  Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: kuninobu@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
b  ERATO, Japan Science and Technology Agency (JST), Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Fax: +81(3)56845206
› Author Affiliations
Further Information

Publication History

Received: 11 April 2014

Accepted after revision: 13 May 2014

Publication Date:
06 June 2014 (online)


Abstract

We have successfully achieved the molybdenum hexacarbonyl [Mo(CO)6] mediated desulfurization of thiols and disulfides. In this reaction, the sulfhydryl (SH) mercapto groups of aryl, benzyl, primary and secondary alkyl thiols, and S–S single bonds of disulfides can be removed. This reaction has high functional group tolerance and is not affected by steric hindrance. The results of the reactions in acetone-d 6 suggest that the sources of hydrogen in the thiol and disulfide desulfurizations are the hydrogen atom(s) of a sulfhydryl group and acetone (solvent), respectively, and that the desulfurization proceeds via the formation of an organomolybdenum species.

Supporting Information

 
  • References and Notes

    • 1a Magnus PD. Tetrahedron 1977; 33: 2019
    • 1b Eisch JJ, Hallenbeck LE, Han KI. J. Am. Chem. Soc. 1986; 108: 7763
    • 2a Eisch JJ, Hallenbeck LE, Han KI. J. Org. Chem. 1983; 48: 2963
    • 2b Eisch JJ, Hallenbeck LE, Lucarelli MA. Fuel 1985; 64: 440
    • 3a Mozingo R, Wolf DE, Harris SA, Folkers K. J. Am. Chem. Soc. 1943; 65: 1013
    • 3b Snyder HR, Cannon GW. J. Am. Chem. Soc. 1944; 66: 155
    • 3c Blicke FF, Sheets DG. J. Am. Chem. Soc. 1948; 70: 3768
    • 3d Hauptmann H, Walter WF. Chem. Rev. 1962; 62: 347
    • 3e Latif KA, Ali MU. Indian J. Chem., Sect. B 1984; 23B: 471
    • 3f Dieter K, Lin YJ. Tetrahedron Lett. 1985; 26: 39
    • 4a Truce WE, Perry FM. J. Org. Chem. 1965; 30: 1316
    • 4b Clark J, Grantham RK, Lydiate J. J. Chem. Soc. C 1968; 1122
    • 4c Boar RB, Hawkins DW, McGhie JF, Barton DH. R. J. Chem. Soc., Perkin Trans. 1 1973; 654
    • 4d Myrboh B, Singh LW, Ila H, Junjappa H. Synthesis 1982; 307
    • 4e Sarma DN, Sharma RP. Tetrahedron Lett. 1985; 26: 371
    • 5a Becker S, Fort Y, Vanderesse R, Caubére P. Tetrahedron Lett. 1988; 29: 2963
    • 5b Becker S, Fort Y, Vanderesse R, Caubére P. J. Org. Chem. 1989; 54: 4848
  • 6 Alper H, Sibtain F, Heveling J. Tetrahedron Lett. 1983; 24: 5329
  • 7 Shim SC, Antebi S, Alper H. Tetrahedron Lett. 1985; 26: 1935
  • 8 Hargreaves AE, Ross JR. H. J. Catal. 1979; 56: 363
  • 9 Reid AH, Shevlin PB, Webb TR, Yun SS. J. Org. Chem. 1984; 49: 4728
  • 10 Roberts JT, Friend CM. J. Am. Chem. Soc. 1987; 109: 3872
  • 11 Van Buren RL, Baltisberger RJ, Woolsey NF, Stenberg VI. J. Org. Chem. 1982; 47: 4107
  • 12 Investigation of reaction temperatures: 140 °C, 59%; 130 °C, 63%; 120 °C, 81%; 110 °C, 55%; 100 °C, 23%; 80 °C, trace.
  • 13 Investigation of the amount of Mo(CO)6 (140 °C): 1.0 equiv, 81%; 0.75 equiv, 71%; 0.50 equiv, 38%; 0.20 equiv, 11%; 0.10 equiv, <5%.
  • 14 Molybdenum-Mediated Desulfurization of Thiols (1 mmol Scale); Typical Procedure A mixture of 2-mercapto-N-methyl-N-phenylbenzamide (1a) (243 mg, 1.00 mmol), Mo(CO)6 (264 mg, 1.00 mmol), and acetone (10.0 mL) in a pressure-resistant glass tube was stirred at 120 °C for 6 h. The mixture was filtered through a short pad of Celite and the precipitate was washed with EtOAc (200 mL). The solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel (hexane– EtOAc, 3:1) to give N-methyl-N-phenylbenzamide (2a) (154 mg, 73%) as a yellow solid. 1H NMR (500 MHz, CDCl3): δ = 7.30–7.28 (m, 2 H), 7.24–7.20 (m, 3 H), 7.17–7.12 (m, 3 H), 7.03 (d, J = 8.0 Hz, 2 H), 3.50 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.9, 145.1, 136.1, 129.8, 129.4, 128.9, 127.9, 127.1, 126.7, 38.6.
  • 15 Anglade M. Bull. Soc. Chim. Fr. 1939; 6: 473
  • 16 Paty M. Bull. Soc. Chim. Fr. 1938; 5: 1276
  • 17 Dupont G. Bull. Soc. Chim. Fr. 1936; 3: 1021
  • 18 Klabunde KJ In Reactive Intermediates . Vol. I. Abramovitch RA. Chap. 2 Academic Press; New York: 1980

    • For several examples of oxidative addition of thiols to a molybdenum center, see:
    • 19a Shortman C, Richards RL. J. Organomet. Chem. 1985; 286: C3
    • 19b Burrow TE, Hills A, Hughes DL, Lane JD, Morris RH, Richards RL. J. Chem. Soc., Dalton Trans. 1991; 1813
    • 19c Buccella D, Parkin G. Chem. Commun. 2009; 289

      For several examples of the generation of transition-metal–carbon bonds via the formation of a (transition-metal)–S double or triple bond, see:
    • 20a Brower DC, Tonker TL, Morrow JR, Rivers DS, Templeton JL. Organometallics 1986; 5: 1093
    • 20b Li M, Ellern A, Espenson JH. Angew. Chem. Int. Ed. 2004; 43: 5837
    • 20c Li M, Ellern A, Espenson JH. J. Am. Chem. Soc. 2005; 127: 10436