Synthesis 2014; 46(23): 3256-3262
DOI: 10.1055/s-0034-1378635
paper
© Georg Thieme Verlag Stuttgart · New York

Thioacetamide as an Ammonium Source for Multicomponent Synthesis of Pyridines from Aldehydes and Electron-Deficient Enamines or Alkynes

Jie-Ping Wan*
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Youyi Zhou
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
,
Kezhi Jiang
b   Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, P. R. of China   Fax: +86(791)88120380   Email: wanjieping@jxnu.edu.cn
,
Hongyan Ye
a   Key Laboratory of Functional Small Organic Molecule, Ministry of Education, and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 13 June 2014

Accepted after revision: 17 July 2014

Publication Date:
21 August 2014 (online)


Abstract

A generally applicable multicomponent method has been established for the synthesis of pyridines. In the reactions, thioacetamide is used as a cheap and efficient ammonium source in a multicomponent reaction with aldehydes and electron-deficient enamines or alkynes to give 3,4,5-trisubstituted pyridines in moderate to good yields and with a high product diversity.

Supporting Information

 
  • References

    • 1a Michael JP. Nat. Prod. Rep. 2005; 22: 627
    • 1b Fan Y, Weinstein JN, Kohn KW, Shi LM, Pommier YJ. J. Med. Chem. 1998; 41: 2216
    • 1c Basnet A, Thapa P, Karki R, Na Y, Jahng Y, Jeong B.-S, Jeong TC, Lee C.-S, Lee E.-S. Bioorg. Med. Chem. 2007; 15: 4351
    • 1d Yang W, Ruan ZM, Wang YF, Van Kirk K, Ma ZP, Arey BJ, Cooper CB, Seethala R, Feyen JH. M, Dickson JK. Jr. J. Med. Chem. 2009; 52: 1204
    • 1e Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. J. Science 1998; 279: 1504
    • 1f Wang W, Li J, Wang K, Smirnova TI, Oldfield E. J. Am. Chem. Soc. 2011; 133: 6525
    • 2a Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 2b Vitale M, Ford PC. Coord. Chem. Rev. 2001; 219: 3
    • 3a Huisgen R, Morikawa M, Herbig K, Brunn E. Chem. Ber. 1967; 100: 1094
    • 3b Nair V, Menon RS, Sreekanth AR, Abhilash N, Biju AT. Acc. Chem. Res. 2006; 39: 520
  • 4 Stout DM, Meyers AI. Chem. Rev. 1982; 82: 223
    • 5a Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 5b Henry DG. Tetrahedron 2004; 60: 6043
    • 5c Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 5d Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 6a Jagath Reddy G, Latha D, Thirupathaiah C, Srinvasa Rao K. Tetrahedron Lett. 2005; 46: 301
    • 6b Kantevari S, Chary MV, Vuppalapati SV. N. Tetrahedron 2007; 63: 13024
    • 6c Kantevari S, Patpi SR, Addla D, Putapatri SR, Sridhar B, Yogeeswari P, Sriram D. ACS Comb. Sci. 2011; 13: 427
    • 7a Kröhnke F, Zecher W, Curtze J, Drechsler D, Pfleghar K, Schnalke KE, Weis W. Angew. Chem., Int. Ed. Engl. 1962; 1: 626
    • 7b Kröhnke F. Synthesis 1976; 1

      For selected recent leading examples on pyridine synthesis, see:
    • 8a Movassaghi M, Hill MD, Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
    • 8b Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
    • 8c Shi Z, Loh T.-P. Angew. Chem. Int. Ed. 2013; 52: 8584
    • 8d Yoshida K, Kawagoe F, Hayashi K, Horiuchi S, Imamoto T, Yanagisawa A. Org. Lett. 2009; 11: 515
    • 8e Ren Z.-H, Zhang Z.-Y, Yang B.-Q, Wang Y.-Y, Guan Z.-H. Org. Lett. 2011; 13: 5394
    • 8f Yin G, Liu Q, Ma J, She N. Green Chem. 2012; 14: 1796
    • 8g Huang H, Ji X, Wu W, Huang L, Jiang H. J. Org. Chem. 2013; 78: 3774
    • 8h Liéby-Muller F, Allais C, Constantieux T, Rodriguez J. Chem. Commun. 2008; 4207
    • 8i Wu Q, Zhang Y, Cui S. Org. Lett. 2014; 16: 1350
    • 8j Zhao M.-N, Hui R.-R, Ren Z.-H, Zhao Y.-Y, Guan Z-H. Org. Lett. 2014; 16: 3082
    • 9a Shaikh AC, Chen C. Bioorg. Med. Chem. Lett. 2010; 20: 3664
    • 9b Razzaq T, Kremsner JM, Kappe CO. J. Org. Chem. 2008; 73: 6321
    • 9c Liao X, Lin W, Lu J, Wang C. Tetrahedron Lett. 2010; 51: 3859
    • 9d Ghorbani-Choghamarani A, Zolfigol MA, Hajjami M, Rastgoo S, Mallakpour S. Lett. Org. Chem. 2010; 7: 249
    • 9e Al-Awadi NA, Ibrahim MR, Elnagdi MH, John E, Ibrahim YA. Beilstein J. Org. Chem. 2012; 8: 441
    • 10a Wan J.-P, Gan S.-F, Sun G.-L, Pan Y.-J. J. Org. Chem. 2009; 74: 2862
    • 10b Wan J.-P, Pan Y.-J. Chem. Commun. 2009; 2768
    • 10c Wan J.-P, Loh CC. J, Pan F, Enders D. Chem. Commun. 2012; 48: 10049
    • 10d Wan J.-P, Wang C, Pan Y. Tetrahedron 2011; 67: 922
    • 10e Wan J.-P, Zhou R, Liu Y, Cai M. RSC Adv. 2013; 3: 2477
  • 11 For a comprehensive review on CAN-catalyzed organic reactions, see: Sridharan V, Menéndez JC. Chem. Rev. 2010; 110: 3805
    • 12a Veitch GE, Bridgwood KL, Ley SV. Org. Lett. 2008; 10: 3623
    • 12b Bridgwood KL, Veitch GE, Ley SV. Org. Lett. 2008; 10: 3627
    • 13a Wan J.-P, Lin Y, Hu K, Liu Y. Beilstein J. Org. Chem. 2014; 10: 287
    • 13b Wan J, Zhou Y, Liu Y, Fang Z, Wen C. Chin. J. Chem. 2014; 32: 219
  • 14 El-Taweel FM. A. A, Elnagdi MH. J. Heterocycl. Chem. 2001; 38: 981