Synlett 2015; 26(14): 2024-2028
DOI: 10.1055/s-0034-1378785
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidative Coupling–Annulation: One-Pot Synthesis of Indolizines from 2-Alkylazaarenes with Alkenes

Jing-ling Liu
a   School of Life and Environmental Sciences, Guilin University of Electronic Technolegy, Guilin, 541004, P. R. of China   Email: yingl@aliyun.com
b   Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, P. R. of China   Email: panym2013@hotmail.com
,
Ying Liang*
a   School of Life and Environmental Sciences, Guilin University of Electronic Technolegy, Guilin, 541004, P. R. of China   Email: yingl@aliyun.com
,
Heng-shan Wang
b   Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, P. R. of China   Email: panym2013@hotmail.com
,
Ying-ming Pan*
b   Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, P. R. of China   Email: panym2013@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 17 May 2015

Accepted after revision: 10 June 2015

Publication Date:
29 July 2015 (online)


Abstract

A novel copper-catalyzed highly selective oxidative coupling–annulation of 2-alkylazaarenes with terminal alkenes was achieved. This process provides a simple, efficient, and atom-economic way to construct indolizines in good yields.

Supporting Information

 
  • References and Notes

    • 1a Flitsch W. Comprehensive Heterocyclic Chemistry II . Vol. 8. Pergamon Press; Oxford: 1984: 237-248
    • 1b Yan B, Liu Y. Org. Lett. 2007; 9: 4323
    • 1c Singh G.-S, Mmatli E.-E. Eur. J. Med. Chem. 2011; 46: 5237
    • 1d Pourashraf M, Delair P, Rasmussen M.-O, Greene A.-E. J. Org. Chem. 2000; 65: 6966
    • 1e Li H, Xia Z.-Q, Chen S.-J, Koya K, Ono M, Sun L.-J. Org. Process Res. Dev. 2007; 11: 246
    • 2a Michael JP. Alkaloids 2001; 55: 91
    • 2b Michael JP. Nat. Prod. Rep. 2002; 19: 742
  • 3 Liu Y.-H, Song Z.-Q, Yan B. Org. Lett. 2007; 9: 409
    • 4a Facompre M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C. Cancer Res. 2003; 63: 7392
    • 4b Reddy M.-V, Rao M.-R, Rhodes D, Hansen M.-S, Rubins K, Bushman F.-D, Venkateswarlu Y, Faulkner D.-J. J. Med. Chem. 1999; 42: 1901
    • 4c Østby O.-B, Dalhus B, Gundersen L.-L, Rise F, Bast A, Haenen G.-RM. M. Eur. J. Org. Chem. 2000; 3763
  • 5 Hagis S, Yamada M, Shirahase K, Okada T, Murakami Y, Ito Y, Matsuura T, Wada M, Kato T, Ueno M, Chikazawa Y, Yamada K, Ono T, Teshirogi OI. M. J. Med. Chem. 1996; 39: 3636
  • 6 Bermudez J, Fake C.-S, Joiner G.-F, Joiner K.-A, King F.-D, Miner W.-D, Sanger G.-J. J. Med. Chem. 1990; 33: 1919
    • 7a Gupta S.-P, Mathur A.-N, Nagappa A.-N, Kumar D, Kumaran S. Eur. J. Med. Chem. 2003; 38: 867
    • 7b Hagishita S, Yamada M, Shirahase K, Okada T, Murakami Y, Ito Y, Matsuura T, Wada M, Kato T, Ueno M, Chikazawa Y, Yamada K, Ono T, Teshirogi I, Ohtani M. J. Med. Chem. 1996; 39: 3636
  • 8 Donnell AF, Dollings PJ, Butera JA, Dietrich AJ, Lipinski KK, Ghavami A, Hirst WD. Bioorg. Med. Chem. Lett. 2010; 20: 2163
  • 9 Østby O.-B, Dalhus B, Gundersen L.-L, Rise F, Bast A, Haenen GR. M. M. Eur. J. Org. Chem. 2000; 3763
    • 10a Scholtz M. Ber. Dtsch. Chem. Ges. 1912; 45: 734
    • 10b Boekelheide V, Windgassen RJ. J. Am. Chem. Soc. 1959; 81: 1456
    • 11a Tschitschibabin AE. Ber. Dtsch. Chem. Ges. 1927; 60: 1607
    • 11b Hurst J, Melton T, Wibberley DG. J. Chem. Soc. 1965; 2948
    • 11c Bora U, Saikia A, Boruah RC. Org. Lett. 2003; 5: 43
    • 12a Lee J.-H, Kim I. J. Org. Chem. 2013; 78: 1283
    • 12b Nagaraj M, Boominathan M, Muthusubramanian S, Bhuvanesh N. Synlett 2012; 23: 1353
    • 12c Zhu H, Stöckigt J, Yu Y, Zou H. Org. Lett. 2011; 13: 2792
    • 12d Ge Y.-Q, Jia J, Yang H, Zhao G.-L, Zhan F.-X, Wang J. Heterocycles 2009; 78: 725
    • 12e Kucukdisli M, Opatz T. J. Org. Chem. 2013; 78: 6670
    • 12f Ohier P, Dach A, Decroix B. Tetrahedron 1996; 52: 13547
    • 13a Kuznetsov A.-G, Bush A.-A, Rybakov V.-B, Babaev E.-V. Molecules 2005; 10: 1074
    • 13b Toche R.-B, Bhavsar D.-C, Kazi M.-A, Bagul S.-M, Jachak M.-N. J. Heterocycl. Chem. 2010; 47: 287
    • 13c Wang K, Herdtweck E, Dömling A. ACS Comb. Sci. 2012; 14: 316
    • 13d Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J. Synthesis 2012; 44: 389
    • 13e Siddiqui Z.-N. Tetrahedron Lett. 2012; 53: 4974
    • 13f Kim M, Jung Y, Kim I. J. Org. Chem. 2013; 78: 10395
    • 14a Bai Y.-G, Zeng J, Ma J.-M, Gorityala B.-K, Liu X.-W. J. Comb. Chem. 2010; 12: 696
    • 14b Georgescu E, Georgescu F, Popa M.-M, Draghici C, Tarko L, Dumitrascu F. ACS Comb. Sci. 2012; 14: 101
    • 14c Bora U, Saikia A, Boruah R.-C. Org. Lett. 2003; 5: 435
    • 14d Zhu H.-J, Stöckigt J, Yu Y.-P, Zou H.-B. Org. Lett. 2011; 13: 2792
  • 15 Barluenga J, Lonzi G, Riesgo L, Lopez LA, Tomas M. J. Am. Chem. Soc. 2010; 132: 13200
    • 16a Yang Y, Xie C, Xie Y, Zhang Y. Org. Lett. 2012; 14: 957
    • 16b Wang X, Li S.-Y, Pan Y.-M, Wang H, Liang H, Chen Z, Qin X. Org. Lett. 2014; 16: 580
    • 16c Yang Y, Cheng K, Zhang Y. Org. Lett. 2009; 11: 5606
    • 16d Xia J.-B, You S.-L. Org. Lett. 2009; 11: 1187
    • 16e Wu Q, Zhao D, Qin X, Lan J, You J. Chem. Commun. 2011; 47: 9188
    • 16f Xia J.-B, Wang X.-Q, You S.-L. J. Org. Chem. 2009; 74: 456
    • 16g Tan X, Liang Y, Bao F, Wang H, Pan Y. Tetrahedron 2014; 70: 6717
    • 16h Gao M, Tian J, Lei A. Chem. Asian J. 2014; 9: 2068
    • 16i Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A. Chem. Commun. 2015; 51: 8769
  • 17 Tang S, Liu K, Long Y, Gao X, Gao M, Lei A. Org. Lett. 2015; 17: 2404
    • 18a Cai X, Xie B. Synthesis 2015; 47: 737
    • 18b Dong J, Wu Q, You J. Tetrahedron Lett. 2015; 56: 1591
    • 18c Liang Y, Liang Y.-F, Jiao N. Org. Chem. Front. 2015; 2: 403
    • 18d Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
    • 18e Zhang D.-Y, Hu X.-P. Tetrahedron Lett. 2015; 56: 283
    • 18f Yang F, Li J, Xie J, Huang Z.-Z. Org. Lett. 2010; 12: 5214
    • 18g Thapa S, Shrestha B, Gurung SK, Giri R. Org. Biomol. Chem. 2015; 13: 4816
    • 19a Liu P, Liu J.-L, Wang H.-S, Pan Y.-M, Liang H, Chen Z.-F. Chem. Commun. 2014; 50: 4795
    • 19b Zhao M, Wang F, Li X.-W. Org. Lett. 2012; 14: 1412
  • 20 Typical Experimental Procedure The reaction mixture of terminal alkenes 1 (0.5 mmol), 2-alkylazaarenes 2 (0.5mmol), Cu(OAc)2 (20 mol%), and DMSO (2 mL) in a 10 mL round-bottom flask was stirred at 80 °C for 12 h. Upon completion, the reaction mixture was diluted with H2O (30 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, and filtered. The solvent was removed under vacuum. The residue was purified by flash column chromatography to afford indolizines 3. Ethyl 3-Phenylindolizine-1-carboxylate (3aa) Yellow solid (106 mg, 0.4 mmol, 80%); mp 61–62 °C. 1H NMR (500 MHz, CDCl3): δ = 8.18–8.23 (m, 2 H), 7.40–7.48 (m, 4 H), 7.34 (m, 1 H), 7.31–7.23 (s, 1 H), 6.98–7.01 (m, 1 H), 6.61–6.64 (m, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 1.35 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 165.1, 136.4, 131.3, 129.1, 128.6, 128.0, 126.4, 123.4, 122.3, 120.2, 116.1, 112.6, 104.2, 59.6, 14.7. ESI-HRMS: m/z calcd for C17H15NO2: 265.11028; found: 265.10894. Ethyl 3-(4-Bromophenyl)indolizine-1-carboxylate (3fa)Yellow solid (134 mg, 0.39 mmol, 78%); mp 88–89 °C. 1H NMR (500 MHz, CDCl3): δ = 8.20–8.15 (m, 2 H), 7.55 (d, J = 8.4 Hz, 2 H), 7.34 (d, J = 8.4 Hz, 2 H), 7.22 (s, 1 H), 7.02–7.00 (m, 1 H), 6.65 (t, J = 6.8 Hz, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 1.34 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 164.9, 136.5, 132.3, 130.1, 130.0, 125.1, 123.1, 122.4, 121.9, 120.3, 116.4, 112.9, 104.5, 59.7, 14.7. ESI-HRMS: m/z calcd for C17H14BrNO2: 343.02079 and 345.01874; found: 343.01908 and 345.01690. Ethyl 3-(4-Methoxyphenyl)indolizine-1-carboxylate (3da) Yellow solid (133 mg, 0.45 mmol, 90%); mp 112–113 °C. 1H NMR (500 MHz, CDCl3): δ = 8.18–8.15 (m, 1 H), 8.13–8.11 (m, 1 H), 7.38–7.35 (m, 2 H), 7.16 (s, 1 H), 6.98–6.93 (m, 3 H), 6.60 (dt, J = 6.8, 1.2 Hz, 1 H), 4.30 (q, J = 7.1 Hz, 2 H), 3.79 (s, 3 H), 1.34 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 165.1, 159.4, 136.0, 130.1, 126.2, 123.6, 123.3, 122.0, 120.1, 115.6, 114.5, 112.4, 103.9, 59.5, 55.4, 14.7. ESI-HRMS: m/z calcd for C18H17NO3: 295.12084; found: 295.11933.