Synlett 2015; 26(11): 1455-1460
DOI: 10.1055/s-0034-1378839
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Synthesis of Dibenzoxazepinones via a One-Pot SNAr and Smiles Rearrangement Process: Orthogonality with Copper-Catalyzed Cyclizations

Timothy E. Hurst
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
,
Matthew O. Kitching
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
,
Lívia C. R. M. da Frota
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
b   Instituto de Pesquisa de Produtos Naturais, Universidade Federal Do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H-Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
,
Keller G. Guimarães
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
c   Departmento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – 31270-901, Belo Horizonte, MG, Brazil
,
Michael E. Dalziel
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
,
Victor Snieckus*
a   Department of Chemistry, Queen’s University, Kingston, ON, K7L 3N6, Canada   Email: Victor.Snieckus@chem.queensu.ca
› Author Affiliations
Further Information

Publication History

Received: 11 April 2015

Accepted after revision: 03 June 2015

Publication Date:
18 June 2015 (online)


To Peter, with fond and vivid remembrance of the birth of Synlett and in praise of how far you have taken it.

Abstract

Reported is the transition-metal-free synthesis of substituted dibenzoxazepinones using a convergent domino SNAr–Smiles rearrangement–SNAr process. Substrate-scope investigations demonstrated the critical importance of ring electronic effects on the efficiency of the process. In addition, the orthogonality of this approach with transition-metal-catalyzed procedures was established.

Supporting Information

 
  • References and Notes


    • For HIV-1 RT inhibition, see:
    • 1a Vilar S, Santan L, Uriarte E. J. Med. Chem. 2006; 49: 1118
    • 1b Klunder JM, Hargrave KD, West M, Cullen E, Pal K, Behnke ML, Kapadia SR, McNeil DW, Wu JC, Chow GC, Adams J. J. Med. Chem. 1992; 35: 1887

    • As CNS agents, see:
    • 1c Liegeois JF. F, Rogister FA, Bruhwyler J, Damas J, Nguyen TP, Inarejos MO, Chleide EM. G, Mercier MG. A, Delarge JE. J. Med. Chem. 1994; 37: 519
    • 1d Nagarajan K, David J, Kulkarni YS, Hendi SB, Shenoy SJ, Upadhyaya P. Eur. J. Med. Chem. 1986; 21: 21

    • For p38 MAP kinase inhibition, see:
    • 1e Dorn A, Schattel V, Laufer S. Bioorg. Med. Chem. Lett. 2010; 20: 3074

    • As noncarbohydrate inhibitors of E. coli ribosomal A-site, see:
    • 1f Maddaford SP, Motamed M, Turner KB, Choi MS. K, Ramnauth J, Rakhit S, Hudgins RR, Fabris D, Johnson PE. Bioorg. Med. Chem. Lett. 2004; 14: 5987

    • For anti-inflammatory activity, see:
    • 1g Chakrabarti JK, Hicks TA. Eur. J. Med. Chem. 1987; 22: 161

    • As antitumor agents:
    • 1h Binaschi M, Boldetti A, Gianni M, Maggi CA, Gensini M, Bigioni M, Parlani M, Giolitti A, Fratelli M, Valli C, Terao M, Garattini E. ACS Med. Chem. Lett. 2010; 1: 411
    • 2a Yang X, Shan G, Rao Y. Org. Lett. 2013; 15: 2334
    • 2b Deraeve C, Guo Z, Bon RS, Blankenfeldt W, DiLucrezia R, Wolf A, Menninger S, Stigter EA, Wetzel S, Choidas A, Alexandrov K, Waldmann H, Goody RS, Wu Y.-W. J. Am. Chem. Soc. 2012; 134: 7384
    • 2c Gijsen HJ. M, Berthelot D, Zaja M, Brône B, Geuens I, Mercken M. J. Med. Chem. 2010; 53: 7011
    • 2d Smits RA, Lim HD, Stegink B, Bakker RA, de Esch IJ. P, Leurs R. J. Med. Chem. 2006; 49: 4512
    • 2e Bunce RA, Schammerhorn JE. J. Heterocycl. Chem. 2006; 43: 1031
    • 2f Samet AV, Marshalkin VN, Kislyi KA, Chernysheva NB, Strelenko YA, Semenov VV. J. Org. Chem. 2005; 70: 9371
    • 2g Abramov IG, Smirnov AV, Kalandadze LS, Sakharov VN, Plakhtinskii VV. Heterocycles 2003; 60: 1611
    • 2h Ouyang X, Tamayo N, Kiselyov AS. Tetrahedron 1999; 55: 2827
    • 3a Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
    • 3b Yang Q, Cao H, Robertson A, Alper H. J. Org. Chem. 2010; 75: 6297
    • 3c Lu S.-M, Alper H. J. Am. Chem. Soc. 2005; 127: 14776
  • 4 Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 14228
    • 5a Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131 ; Angew. Chem. 1993, 105, 137
    • 5b Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
  • 6 Sapegin V, Sakharov VN, Kalandadze LS, Smirnov AV, Khristolyubova TA, Plakhtinskii VV, Ivashchenko AV. Mendeleev Commun. 2008; 18: 281
  • 7 Liu Y, Chu C, Huang A, Zhan C, Ma Y, Ma C. ACS Comb. Sci. 2011; 13: 547
    • 8a Liu Y, Ma Y, Zhan C, Huang A, Ma C. Synlett 2012; 23: 255
    • 8b Zhao Y, Dai Q, Chen Z, Zhang Y, Bai Y, Ma C. ACS Comb. Sci. 2013; 15: 130
    • 8c Niu X, Yang B, Li Y, Fang S, Huang Z, Xie C, Ma C. Org. Biomol. Chem. 2013; 11: 4102
    • 9a Sapegin AV, Kalinin SA, Smirnov AV, Dorogov MV, Krasavin M. Synthesis 2012; 44: 2401
    • 9b Zhao Y, Wu Y, Jia J, Zhang D, Ma C. J. Org. Chem. 2012; 77: 8501
    • 9c Sang P, Yu M, Tu H, Zou J, Zhang Y. Chem. Commun. 2013; 49: 701
    • 9d Liu Y, Zhang X, Ma Y, Ma C. Tetrahedron Lett. 2013; 54: 402
    • 9e Huang A, Liu H, Ma C. RSC Adv. 2013; 3: 13976
    • 9f Huang A, Chen Y, Zhou Y, Guo W, Xiaodong W, Ma C. Org. Lett. 2013; 15: 5480
    • 9g Yang B, Huang Z, Guan H, Niu X, Li Y, Fang S, Ma C. Tetrahedron Lett. 2013; 54: 5994
    • 9h Sapegin AV, Kalinin SA, Smirnov AV, Dorogov MV, Krasavin M. Tetrahedron 2014; 70: 1077
    • 9i Gawande SD, Kavala V, Zanwar MR, Kuo C.-W, Huang W.-C, Kuo T.-S, Huang H.-N, He C.-H, Yao C.-F. Adv. Synth. Catal. 2014; 356: 2599
    • 9j Ganguly NC, Mondal P, Roy S, Mitra P. RSC Adv. 2014; 4: 55640
    • 9k Yang B, Tan X, Guo R, Chen S, Zhang Z, Chu X, Xie C, Zhang D, Ma C. J. Org. Chem. 2014; 79: 8040
    • 9l Xiao Y, Zhang Z, Chen Y, Shao X, Li Z, Xu X. Tetrahedron 2015; 71: 1863
    • 9m Liu S, Hu Y, Qian P, Hu Y, Ao G, Chen S, Zhang S, Zhang Y. Tetrahedron Lett. 2015; 56: 2211
    • 9n Xie C, Zhang Z, Yang B, Song G, Gao H, Wen L, Ma C. Tetrahedron 2015; 71: 1831
  • 10 Kitching MO, Hurst TE, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 2925
    • 11a Bunnet JF, Zahler RE. Chem. Rev. 1951; 49: 273
    • 11b Mąkosza M. Chem. Eur. J. 2014; 20: 5536
  • 12 As is well appreciated, the rate of SNAr reactions is highly dependent on the nature of the leaving group, see ref. 11a and references therein.
    • 13a Kappe CO, Pieber B, Dallinger D. Angew. Chem. Int. Ed. 2013; 52: 1088
    • 13b Dudley GB, Steigman AE, Rosana MR. Angew. Chem. Int. Ed. 2013; 52: 7918
    • 13c Kappe CO. Angew. Chem. Int. Ed. 2013; 52: 7924
  • 14 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 15a Welch JT. Tetrahedron 1987; 43: 3123
    • 15b Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 15c Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 15d Furuya T, Kamlet AS, Ritter T. Nature (London, U.K.) 2011; 473: 470
  • 16 Reinaud O, Capdevielle P, Maumy M. J. Chem. Soc., Perkin Trans. 1 1991; 2129
    • 17a Artamkina GA, Egorov MP, Beletskaya IP. Chem. Rev. 1982; 82: 427
    • 17b Meisenheimer J. Justus Liebigs Ann. Chem. 1902; 323: 205
  • 18 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 19a Snieckus V. Chem. Rev. 1990; 90: 879
    • 19b Hartung CG, Snieckus V In Modern Arene Chemistry . Astruc D. Wiley-VCH; New York: 2002: 330-367
    • 19c Board J, Cosman J, Rantanen T, Singh S, Snieckus V. Platinum Met. Rev. 2013; 57: 234
    • 20a Brewster K, Clarke RJ, Harrison JM, Inch TD, Utley D. J. Chem. Soc., Perkin Trans. 1 1976; 1286
    • 20b Schmutz J, Künzle F, Hunziker F, Bürki A. Helv. Chim. Acta 1965; 48: 336
  • 21 Knappke CE. I, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2010; 49: 3568
  • 22 See Supporting Information for full experimental details and compound characterization. General Procedure – Reaction of 2-Fluorobenzamides with 2-Bromophenols A sealable tube (10 mL) was charged with the 2-fluorobenzamide (1.00 mmol), the 2-bromophenol (2.00 mmol), and K2CO3 (0.290 g, 2.10 mmol). NMP (3 mL) was added, and the tube was sealed. The heterogeneous reaction mixture was heated to 150 °C, 180 °C, or 220 °C for 2–4 h under microwave irradiation (Biotage Initiator Microwave operating at 400 W). After cooling to r.t., the reaction mixture was partitioned between 2 M HCl (20 mL) and EtOAc (3 × 20 mL). The combined organics were washed with 2 M NaOH (2 × 20 mL) and sat. brine (20 mL), dried over MgSO4, subjected to filtration, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc–hexanes (1:19 to 1:5) to deliver the title compound. N-Ethyl 7-Chlorodibenz[b,f][1,4]oxazepin-11(10H)-one (3a) The reaction of N-ethyl 2-fluorobenzamide (1a, 0.167 g, 1.00 mmol) with 2-bromo-4-chlorophenol (2a, 0.415 g, 2.00 mmol) at 220 °C for 2 h gave 3a as a colorless solid (0.170 g, 62%); mp 124–126 °C. IR (film): 1645, 1607 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89 (dd, J = 1.7, 7.8 Hz, 1 H), 7.48 (dt, J = 1.5, 7.8 Hz, 1 H), 7.32 (d, J = 2.3 Hz, 1 H), 7.28 (s, 1 H), 7.26 (d, J = 7.3 Hz, 1 H), 7.22–7.18 (m, 2 H), 4.17 (q, J = 7.1 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.7 (C), 160.1 (C), 154.9 (C), 133.6 (C), 133.3 (CH), 132.0 (CH), 130.9 (C), 126.6 (C), 125.9 (CH), 124.5 (CH), 123.7 (CH), 121.9 (CH), 119.5 (CH), 44.2 (CH2), 13.6 (Me). LRMS (EI): m/z (%) = 273/275 (58/19) [M+], 238 (100), 210 (24), 195 (26), 139 (15), 105 (10), 84 (13). HRMS (EI): m/z calcd for C15H12ClNO2 +: 273.0557; found: 273.0563.