Synthesis 2015; 47(19): 3067-3078
DOI: 10.1055/s-0034-1378845
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Route to N-Monosubstituted Guanidino-Lactams

Sara Tommasi
a   Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK
,
Chiara Zanato
a   Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK
,
Rey Carabeo
b   Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK
,
Arduino A. Mangoni
c   Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia
,
Sergio Dall’Angelo
a   Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK
,
Matteo Zanda*
a   Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill AB25 2ZD, Scotland, UK
d   C.N.R.-I.C.R.M., via Mancinelli 7, 20131 Milano, Italy   Email: m.zanda@abdn.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 15 February 2015

Accepted after revision: 05 June 2015

Publication Date:
25 June 2015 (online)


Abstract

A small library of guanidino-lactams were synthesized in four steps and good overall yields by following the routes: preparation of guanylating agents, synthesis of protected guanidino-acids, cyclization to fully protected guanidino-lactams, and deprotection to the target compounds. The guanidino-lactams were assayed as antimicrobials on E. coli showing no significant antibiotic activity.

 
  • References

  • 1 Lednicer D, Mitscher LA. The Organic Chemistry of Drug Synthesis. Vol. 1. Wiley; New York: 1977
  • 2 Ghuysen JM. Trends Microbiol. 1994; 372
  • 3 Imming P, Klar B, Dix D. J. Med. Chem. 2000; 43: 4328
    • 4a StLaurent DR, Balasubramanian N, Han WT, Trehan A, Federici ME, Meanwell NA, Wright JJ, Seiler SM. Bioorg. Med. Chem. 1995; 3: 1145
    • 4b Tamura SY, Goldman EA, Brunck TK, Ripka WC, Semple JE. Bioorg. Med. Chem. Lett. 1997; 7: 331
    • 4c Salimbeni A, Paleari F, Canevotti R, Criscuoli M, Lippi A, Angiolini M, Belvisi L, Scolastico C, Colombo L. Bioorg. Med. Chem. Lett. 1997; 7: 2205
    • 4d Harmat NJ. S, Di Bugno C, Criscuoli M, Giorgi R, Lippi A, Martinelli A, Monti S, Subissi A. Bioorg. Med. Chem. Lett. 1998; 8: 1249
    • 4e Bachand B, DiMaio J, Siddiqui MA. Bioorg. Med. Chem. Lett. 1999; 9: 913
    • 4f Seo J, Silverman RB. Tetrahedron Lett. 2006; 47: 4069
    • 4g Zervas L, Winitz M, Greenstein JP. J. Am. Chem. Soc. 1961; 83: 3300
    • 4h Shuman RT, Rothenberger RB, Campbell CS, Smith GF, Gifford-Moore DS, Paschal JW, Gesellchen PD. J. Med. Chem. 1995; 38: 4446
    • 4i Balasubramanian N, StLaurent DR, Federici ME, Meanwell NA, Wright JJ, Schumacher WA, Seiler SM. J. Med. Chem. 1993; 36: 300
    • 4j Bajusz S, Szell E, Bagdy D, Barabas E, Horvath G, Dioszegi M, Fittler Z, Szabo G, Juhasz A, Tomori E, Szilagyi G. J. Med. Chem. 1990; 33: 1729
  • 5 Van Ameijde J, Poot AJ, Van Wandelen LT. M, Wammes AE. M, Ruijtenbeek R, Rijkers DT. S, Liskamp RM. J. Org. Biomol. Chem. 2010; 8: 1629
  • 6 Bauaer AW, Kirby WM, Sherris JC, Turck M. Am. J. Clin. Pathol. 1966; 45: 493
  • 7 Andrus A, Partridge B, Heck J, Christensen BG. Tetrahedron Lett. 1984; 25: 911