Synlett 2015; 26(04): 537-542
DOI: 10.1055/s-0034-1379878
letter
© Georg Thieme Verlag Stuttgart · New York

Copper Nanopowder Catalyzed Cross-Coupling of Diaryl Disulfides with Aryl Iodides in PEG-400

Xiang-mei Wu*
Department of Chemistry, College of Ecology, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com
,
Guo-bing Yan
Department of Chemistry, College of Ecology, Lishui University, Lishui, Zhejiang 323000, P. R. of China   Email: lswxm7162@163.com
› Author Affiliations
Further Information

Publication History

Received: 04 October 2014

Accepted after revision: 16 November 2014

Publication Date:
07 January 2015 (online)


Abstract

An eco-friendly thiolation via diaryl disulfides and aryl iodides under ligand-free conditions is reported. With copper nanopowder as catalyst and PEG-400 as solvent, a variety of unsymmetrical diaryl sulfides are synthesized in good to excellent yields. The process is free from foul-smelling and unstable thiols and the copper nanopowder–PEG-400 catalytic system can be directly reused for four repetitive cycles.

Supporting Information

 
  • References and Notes

    • 1a Marcincal-Lefebvre A, Gesquiere JC, Lemer C. J. Med. Chem. 1981; 24: 889
    • 1b Kadlor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
    • 1c Nielsen SF, Nielsen EO, Olsen GM, Liljefors T, Peters D. J. Med. Chem. 2000; 43: 2217
    • 1d Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 1e Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Stephen SW, Fesik W, von Geldern TW. J. Med. Chem. 2001; 44: 1202
    • 1f Liu LP, Stelmach JE, Natarajan SR, Chen M.-H, Singh SB, Schwartz CD, Fitzgerald CE, O’Keefe SJ, Zaller DM, Schmatz DM, Doherty JB. Bioorg. Med. Chem. Lett. 2003; 13: 3979
    • 1g De Martino G, Edler MC, La Regina G, Cosuccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947
    • 2a Suirez AR, Rossi LI, Martin SE. Tetrahedron Lett. 1995; 36: 1201
    • 2b Aldea R, Alper H. J. Org. Chem. 1995; 60: 8365
    • 2c Reddy TI, Varma RS. Chem. Commun. 1997; 471
    • 2d Batigalhia F, Zaldini-Hernandes M, Ferreira AG, Malvestiti I, Cass QB. Tetrahedron 2001; 57: 9669
    • 2e Mohile SS, Potdar MK, Salunkhe MM. Tetrahedron Lett. 2003; 44: 1255
    • 2f Xu L, Cheng J, Trudell ML. J. Org. Chem. 2003; 68: 5388
    • 2g Iranpoor N, Firouzabadi H, Pourali AR. Synlett 2004; 347
    • 2h Fukuda N, Ikemoto T. J. Org. Chem. 2010; 75: 4629
    • 2i Bahrami K, Khodaei MM, Arabi MS. J. Org. Chem. 2010; 75: 6208
    • 2j Rostami A, Akradi J. Tetrahedron Lett. 2010; 51: 3501
    • 2k Rahimizadeh M, Rajabzadeh G, Khatami SM, Eshghi H, Shiri A. J. Mol. Catal. A: Chem. 2010; 323: 59
    • 2l Maggi R, Chitsaz S, Loebbecke S, Piscopo CG, Sartori G, Schwarzer M. Green Chem. 2011; 13: 1121
    • 2m Wu XF. Tetrahedron Lett. 2012; 53: 4328
    • 3a Yamamoto T, Sekine Y. Can. J. Chem. 1984; 62: 1544
    • 3b Lindley J. Tetrahedron 1984; 40: 1433
    • 3c Hickman RJ. S, Christie BJ, Guy RW, White TJ. Aust. J. Chem. 1985; 38: 899
    • 4a Migita T, Shimizu T, Asami Y, Shiobara J.-I, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 4b Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 4c Li GY, Zheng G, Noonan AF. J. Org. Chem. 2001; 66: 8677
    • 4d Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 4e Mispelaere-Canivet C, Jean-Francis Spindler J.-F, Perrioa S, Beslin P. Tetrahedron 2005; 61: 5253
    • 4f Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 4g Dahl T, Tornøe CW, Bang-Andersen B, Nielsen P, Jøgensen M. Angew. Chem. Int. Ed. 2008; 47: 1726
    • 4h Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 5a Cristau HJ, Chabaud B, Chêne A, Christol H. Synthesis 1981; 892
    • 5b Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 5c Millois C, Diaz P. Org. Lett. 2000; 2: 1705
    • 5d Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
    • 6a Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 6b Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 6c Enguehard-Gueiffier C, Thery I, Gueiffier A, Buchwald SL. Tetrahedron 2006; 62: 6042
    • 6d Carril M, SanMartin R, Dominguez E, Tellitu I. Chem. Eur. J. 2007; 13: 5100
    • 6e Zhang H, Cao W, Ma D. Synth. Commun. 2007; 37: 25
    • 6f Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 6g Verma AK, Singh J, Chaudhary R. Tetrahedron Lett. 2007; 48: 7199
    • 6h Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
  • 7 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 8a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 8b Reddy VP, Swapna K, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
    • 9a Zheng N, McWilliams JC, Fleitz FJ, Armstrong JD, Volante RP. J. Org. Chem. 1998; 63: 9606
    • 9b Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
    • 9c Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309
    • 9d Mispelaere-Canivet C, Spindler J.-F, Perrio S, Beslin P. Tetrahedron 2005; 61: 5253
    • 10a Wu Y.-J, He H. Synlett 2003; 1789
    • 10b Ranu BC, Saha A, Jana R. Adv. Synth. Catal. 2007; 349: 2690
    • 10c Rout L, Sen TK, Punniyamurthy T. Angew. Chem. Int. Ed. 2007; 46: 5583
    • 10d Sperotto E, van Klink GP. M, deVries JG, van Koten G. J. Org. Chem. 2008; 73: 5625
    • 10e Rout L, Saha P, Jammi S, Punniyamurthy T. Eur. J. Org. Chem. 2008; 640
    • 10f Gonzalez-Arellano C, Luque R, Macquarrie DJ. Chem. Commun. 2009; 45: 1410
    • 10g Bhadra S, Sreedhar B, Ranu BC. Adv. Synth. Catal. 2009; 351: 2369
    • 10h Chen C.-K, Chen Y.-W, Lin C.-H, Lin H.-P, Lee C.-F. Chem. Commun. 2010; 46: 282
    • 10i Kovács S, Novák Z. Org. Biomol. Chem. 2011; 9: 711
    • 10j Xu HJ, Liang YF, Zhou XF, Feng YS. Org. Biomol. Chem. 2012; 10: 2562
  • 11 Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
    • 12a Chowdhury S, Roy S. Tetrahedron Lett. 1997; 38: 2149
    • 12b Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
    • 12c Taniguchi N. J. Org. Chem. 2004; 69: 6904
    • 12d Ranu BC, Mandal T. J. Org. Chem. 2004; 69: 5793
    • 12e Ajiki K, Hirano M, Tanaka K. Org. Lett. 2005; 7: 4193
    • 12f Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
    • 12g Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 12h Luo PS, Yu M, Tang RY, Zhong P, Li JH. Tetrahedron Lett. 2009; 50: 1066
    • 12i Yasuike S, Nishioka M, Kakusawa N, Kurita J. Tetrahedron Lett. 2011; 52: 6403
    • 12j Wang H, Jiang L, Chen T, Li Y. Eur. J. Org. Chem. 2010; 2324
    • 13a Zhang SH, Qian PC, Zhang ML, Hu ML, Cheng J. J. Org. Chem. 2010; 75: 6732
    • 13b Zou LH, Reball J, Mottweiler J, Bolm C. Chem. Commun. 2012; 48: 11307
    • 13c Huang DY, Chen JX, Dan WX, Ding JC, Liu MC, Wu HY. Adv. Synth. Catal. 2012; 354: 2123
    • 13d Ge WL, Wei YY. Chem. Commun. 2012; 48: 2066
    • 13e Yu CM, Zhang CL, Shi XJ. Eur. J. Org. Chem. 2012; 1953
    • 13f Prasad CD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S. J. Org. Chem. 2013; 78: 1434
    • 14a Thathagar MB, Beckers J, Rothenberg G. J. Am. Chem. Soc. 2002; 124: 11858
    • 14b Choudary BM, Kantam ML, Ranganath KV. S, Mahender K, Sreedhar B. J. Am. Chem. Soc. 2004; 126: 3396
    • 14c Thathagar MB, Beckers J, Rothenberg G. Green Chem. 2004; 6: 215
    • 14d Choudary BM, Ranganath KV. S, Pal U, Kantam ML, Sreedhar B. J. Am. Chem. Soc. 2005; 127: 13167
    • 14e Karimi B, Abedi S, Clark JH, Budarin V. Angew. Chem. Int. Ed. 2006; 45: 4776
    • 14f Rout L, Jammi S, Punniyamurthy T. Org. Lett. 2007; 9: 3397
    • 14g Su F.-Z, Liu Y.-M, Wang L.-C, Cao Y, He H.-Y, Fan K.-N. Angew. Chem. Int. Ed. 2008; 47: 334
    • 14h Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Chem. Rev. 2008; 108: 2064
    • 14i Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T. J. Org. Chem. 2009; 74: 1971
    • 14j Sreedhar B, Arundhathi R, Reddy PL, Kantam ML. J. Org. Chem. 2009; 74: 7951
    • 14k Stratakis M, Garcia H. Chem. Rev. 2012; 112: 4469
    • 15a Dicherson TJ, Reed NN, Janda KD. Chem. Rev. 2002; 102: 3325
    • 15b Chandraskhar S, Narsihmulu C, Sultana SS, Reddy NR. Org. Lett. 2002; 4: 4399
    • 15c Luo C, Zhang Y, Wang Y. J. Mol. Catal. A: Chem. 2005; 229: 7
    • 15d Chen J, Spear SK, Huddleston JG, Rogers RD. Green Chem. 2005; 7: 64
    • 15e Zhao H, Cheng M, Zhang J, Cai M. Green Chem. 2014; 16: 2515
    • 15f Feu KS, de la Torre AF, Silva S, de Moraes MA. F. Jr, Corrêa AG, Paixão MW. Green Chem. 2014; 16: 3169
  • 16 Cintas P, Tagliapietra S, Calcio Gaudino E, Palmisano G, Cravotto G. Green Chem. 2014; 16: 1056
  • 17 She J, Jiang Z, Wang Y. Tetrahedron Lett. 2009; 50: 593
  • 18 General Procedure Copper nanopowder (0.05 mmol), aryl iodide (1.0 mmol), diaryl disulfide (0.5 mmol), KOH (2.0 mmol), and PEG-400 (2.0 mL) were taken in a 25 mL two-neck flask. The reaction mixture was stirred at 110 °C for 12 h in air. After cooling to r.t., the product was diluted with H2O (5 mL) and extracted with EtOAc (4 × 10 mL). The extracts were combined and washed by brine (3 × 10 mL), dried over MgSO4, filtered, evaporated, and purified by chromatography on silica gel to obtain the desired products with EtOAc–hexane (v/v = 1:5 to 1:100). The products were characterized by their spectral and analytical data and compared with those of the known compounds (see Supporting Information). Typical Data for Representative Compound – 3-Methylthiophenyl Phenyl Sulfide (Table 2, Entry 7) 1H NMR (300 MHz, CDCl3): δ = 7.37–7.07 (m, 9 H), 2.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 139.8, 137.0, 135.1, 131.5, 129.4, 129.3, 128.0, 127.4, 127.2, 125.0, 15.6. GC–MS (EI): m/z = 232 [M]+. Anal Calcd for C13H12S2: C, 67.20; H, 5.21. Found: C, 67.12; H, 5.15.