Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(11): 1596-1600
DOI: 10.1055/s-0034-1379927
DOI: 10.1055/s-0034-1379927
letter
Cobalt(III)-Catalyzed Allylation with Allyl Acetates by C–H/C–O Cleavage
Further Information
Publication History
Received: 07 March 2015
Accepted after revision: 07 May 2015
Publication Date:
03 June 2015 (online)
Dedicated to the 69th birthday of Prof. Peter Vollhardt
Abstract
Versatile cobalt-catalyzed C–H allylations on arenes, indoles, and pyrroles were accomplished with allyl acetates. The C–H/C–O functionalization process was characterized by a broad substrate scope as well as an excellent functional-group tolerance and was shown to occur by initial C–H cobaltation.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379927.
- Supporting Informations
-
References and Notes
- 1a Ackermann L. Org. Process Res. Dev. 2015; 18: 260
- 1b Kuhl N, Schroeder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
- 1c Tani S, Uehara TN, Yamaguchi J, Itami K. Chem. Sci. 2014; 5: 123
- 1d Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 1e Thirunavukkarasu VS, Kozhushkov SI, Ackermann L. Chem. Commun. 2014; 50: 29
-
1f Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 1g Schipper DJ, Fagnou K. Chem. Mater. 2011; 23: 1594
- 1h Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 1i Daugulis O. Top. Curr. Chem. 2010; 292: 57
-
1j Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
- 1k Ackermann L, Vicente R, Kapdi A. Angew. Chem. Int. Ed. 2009; 48: 9792
- 1l Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 2 Kozhushkov SI, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 3a Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
- 3b Ackermann L, Pospech J, Potukuchi HK. Org. Lett. 2012; 14: 2146
- 3c So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
- 3d Ackermann L, Fenner S. Chem. Commun. 2011; 47: 430
- 3e Ackermann L, Althammer A, Fenner S. Angew. Chem. Int. Ed. 2009; 48: 201
- 3f Ackermann L, Mulzer M. Org. Lett. 2008; 10: 5043
- 3g Ackermann L, Vicente R, Althammer A. Org. Lett. 2008; 10: 2299
- 3h Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
- 4 Ackermann L. J. Org. Chem. 2014; 79: 8948
- 5 Gao K, Yoshikai N. Acc. Chem. Soc. 2014; 47: 1208
- 6a Sun B, Yoshino T, Matsunaga S, Kanai M. Chem. Commun. 2015; 51: 4659
- 6b Li J, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 3635
- 6c Hummel JR, Ellman JA. J. Am. Chem. Soc. 2015; 137: 490
- 6d Patel P, Chang S. ACS Catal. 2015; 5: 853
- 6e Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu Z.-J, Zheng X.-X, Gong J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
- 6f Pawar AB, Chang S. Org. Lett. 2015; 17: 660
- 6g Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 6h Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M. J. Am. Chem. Soc. 2014; 136: 5424
- 6i Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4684
-
6j Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
- 6k Ding Z, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 8574
- 6l Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
- 6m Chen Q, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
- 6n Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400 ; and references cited therein
-
7 Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
- 8 Li J, Ackermann L. Chem. Eur. J. 2015; 21: 5718
- 9 Punji B, Song W, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
- 10a Liu W, Zell D, John M, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 4092
- 10b Gu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
- 10c Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
- 10d Ackermann L, Punji B, Song W. Adv. Synth. Catal. 2011; 353: 3325
- 10e Ackermann L, Potukuchi HK, Landsberg D, Vicente R. Org. Lett. 2008; 10: 3081
- 11a Park J, Mishra NK, Sharma S, Han S, Shin Y, Jeong T, Oh JS, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2015; 80: 1818
- 11b Zhang S.-S, Wu J.-Q, Lao Y.-X, Liu X.-G, Liu Y, Lv W.-X, Tan D.-H, Zeng Y.-F, Wang H. Org. Lett. 2014; 16: 6412
- 11c Kim M, Sharma S, Mishra NK, Han S, Park J, Kim M, Shin Y, Kwak JH, Han SH, Kim IS. Chem. Commun. 2014; 50: 11303
- 11d Wang H, Schroeder N, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
- 11e [Fe]: Asako S, Norinder J, Ilies L, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2014; 356: 1481
- 11f Asako S, Ilies L, Nakamura E. J. Am. Chem. Soc. 2013; 135: 17755
- 11g [Re]: Kuninobu Y, Ohta K, Takai K. Chem. Commun. 2011; 47: 10791
- 11h Oi S, Tanaka Y, Inoue Y. Organometallics 2006; 25: 4773 ; and references cited therein
- 12 During the course of our studies, functionalizations of indoles with one allyl carbonate were independently disclosed: Yu DG, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
- 13 Wencel-Delord J, Droege T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 14 Hyster TK. Catal. Lett. 2015; 145: 458
- 15 Ackermann L, Lygin AV. Org. Lett. 2011; 13: 3332
- 16 Li W, Weng L, Jin G. Inorg. Chem. Commun. 2004; 7: 1174
- 17 Ackermann L. Chem. Rev. 2011; 111: 1315
- 18 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 19 General Procedure for the Cobalt-Catalyzed C–H Allylation To a solution of heteroarene 1 (0.50 mmol, 1.0 equiv), [Cp*Co(CO)I2] (4, 0.025 mmol, 5.0 mol%), AgSbF6 (0.05 mmol, 10 mol%), and AcOK (0.05 mmol, 10 mol%) in DCE (1.5 mL) allyl acetate (2a, 1.00 mmol, 2.0 equiv) was added. The mixture was stirred for 16 h at 80 °C. After completion of the reaction, sat. aq NH4Cl solution (5 mL) was added at ambient temperature, and the mixture was extracted with MTBE (4 × 5 mL). Drying over Na2SO4, evaporation of the solvents, and purification by column chromatography on silica gel using n-hexane–EtOAc yielded the product. 2-Allyl-5-fluoro-1-(pyrimidin-2-yl)-1H-indole (3d) The general procedure was followed using indole 1d (107 mg, 0.50 mmol, 1.0 equiv), allyl acetate (2a, 107 mg, 1.00 mmol, 2.0 equiv), [Cp*Co(CO)I2] (4, 11.9 mg, 0.025 mmol, 5 mol%), AgSbF6 (17.3 mg, 0.05 mmol, 10 mol%), and AcOK (4.9 mg, 0.05 mmol, 10 mol%). Purification by column chromatography on silica gel (n-hexane–EtOAc = 10:1) yielded 3d (119 mg, 473 μmol, 94%) as a colorless solid; mp 65–67 °C. Rf = 0.33 (n-hexane–EtOAc = 10:1). 1H NMR (300 MHz, CDCl3): δ = 8.77 (dd, J = 4.8, 0.5 Hz, 2 H), 8.23 (ddt, J = 9.1, 4.7, 0.6 Hz, 1 H), 7.18 (ddd, J = 9.0, 2.6, 0.5 Hz, 1 H), 7.14 (td, J = 4.8, 0.5 Hz, 1 H), 6.95 (td, J = 9.2, 2.6 Hz, 1 H), 6.45 (dt, J = 1.0 Hz, 1 H), 5.97 (ddt, J = 17.0, 10.1, 6.5 Hz, 1 H), 5.06 (ddt, J = 17.0, 1.6 Hz, 1 H), 5.03 (ddt, J = 10.1, 1.6 Hz, 1 H), 3.97 (dq, J = 6.6, 1.3 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 159.1 (d, 1 J C–F = 237.0 Hz, Cq), 158.2 (CH), 158.2 (Cq), 141.7 (Cq), 135.4 (CH), 133.6 (Cq), 130.1 (d, 3 J C–F = 10.1 Hz, Cq), 117.3 (CH), 116.8 (CH2), 115.1 (d, 3 J C–F = 9.0 Hz, CH), 110.4 (d, 2 J C–F = 25.0 Hz, CH), 106.4 (CH), 105.1 (d, 2 J C–F = 23.6 Hz, CH), 34.4 (CH2). 19F NMR (282 MHz, CDCl3): δ = –122.89 (td, J = 9.2, 4.7 Hz). IR (ATR): ν = 3080, 2922, 1558, 1442 1348, 1204, 927, 897, 809, 635 cm–1. MS (EI): m/z(relative intensity): 276.1 (19) [M + Na]+, 254.1 (100) [M + H]+. ESI-HRMS: m/zcalcd for C15H13FN3 [M + H]+: 254.1094; found: 254.1088. 2-Allyl-1-(pyrimidin-2-yl)-6,7-dihydro-1H-indol-4(5H)-one (7a) The general procedure was followed using indolone 6a (107 mg, 0.50 mmol, 1.0 equiv), allyl acetate (2a, 104 mg, 1.00 mmol, 2.0 equiv), [Cp*Co(CO)I2] (4, 11.9 mg, 0.025 mmol, 5 mol%), AgSbF6 (17.3 mg, 0.05 mmol, 10 mol%), and AcOK (5.0 mg, 0.05 mmol, 10 mol%). Purification by column chromatography on silica gel (n-hexane–EtOAc = 10:1) yielded 7a (116 mg, 462 μmol, 92%) as a colorless solid; mp 104–106 °C. Rf = 0.30 (n-hexane–EtOAc = 10:1). 1H NMR (300 MHz, CDCl3): δ = 8.78 (dd, J = 4.9, 0.7 Hz, 2 H), 7.28 (t, J = 4.9 Hz, 1 H), 6.43 (d, J = 1.0 Hz, 1 H), 5.76 (ddt, J = 16.8, 10.4, 6.5 Hz, 1 H), 4.87 (ddt, J = 10.3, 1.4 Hz, 1 H), 4.85 (ddt, J = 16.8, 1.6 Hz, 1 H), 3.59 (dq, J = 6.5, 1.2 Hz, 2 H), 2.95 (t, J = 6.2 Hz, 2 H), 2.48 (dd, J = 7.1, 5.7 Hz, 2 H), 2.09 (tt, J = 6.4 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 194.9 (Cq), 158.9 (CH), 157.0 (Cq), 145.5 (Cq), 135.2 (CH), 134.2 (Cq), 121.6 (Cq), 119. 2 (CH), 116.4 (CH2), 106.2 (CH), 37.9 (CH2), 32.4 (CH2), 24.2 (CH2), 24.0 (CH2). IR (ATR): ν = 2935, 1640, 1559, 1417, 1406, 1168, 994, 898, 823, 734 cm–1. MS (EI): m/z (relative intensity): 292.1 (60) [M + K]+, 276.1 (51) [M + Na]+, 254.1 (100) [M + H]+. ESI-HRMS: m/z calcd for C15H16N3O [M + H]+: 254.1293; found: 254.1288.
- 20 The removal of the N-pyrimidyl-substituted indoles was described in ref. 15.
Representative recent reviews on C–H activation:
For examples of metal-catalyzed direct C–H bond arylations through challenging C–O bond cleavage with fluorine-free electrophiles, see:
For recent progress in cobalt-catalyzed C–H functionalizations, see:
Representative recent examples:
For examples with ruthenium or rhodium complexes, see: