Synthesis 2015; 47(09): 1280-1290
DOI: 10.1055/s-0034-1380069
paper
© Georg Thieme Verlag Stuttgart · New York

A One-Pot, Transition-Metal-Free Procedure for C–O, C–S, and C–N Bond Formation at the Benzylic Position of Methylarenes

Hiroyuki Shimojo
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan   Email: [email protected]
,
Katsuhiko Moriyama
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan   Email: [email protected]
,
Hideo Togo*
Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 14 December 2014

Accepted after revision: 16 January 2015

Publication Date:
24 February 2015 (online)


Abstract

Various methylarenes are treated with 1,3-dibromo-5,5-dimethylhydantoin or N-bromosuccinimide and a catalytic amount of 2,2′-azobis(isobutyronitrile) in acetonitrile, carbon tetrachloride, or methyl tert-butyl ether, and then reacted with benzoic acid, p-toluenethiol, sodium p-toluenesulfinate, aqueous dimethylamine, and succinimide (formed from N-bromosuccinimide) to provide the corresponding arylmethyl benzoates, arylmethyl p-tolyl thioethers, arylmethyl p-tolyl sulfones, N-arylmethyl-N,N-dimethylamines, and N-(arylmethyl)succinimides in good yields, respectively. The reactions involve one-pot, transition-metal-free functionalizations to form C–O, C–S or C–N bonds at the benzylic positions of the methylarenes.

Supporting Information

 
  • References

    • 1a Vindigni V, Cortivo R, Iacobellis L, Abatangelo Z, Zavan B. Int. J. Mol. Sci. 2009; 10: 2972
    • 1b Aliboni A, D’Andrea A, Massanisso P. J. Agric. Food Chem. 2011; 59: 282
    • 1c Pappas CS, Malovikova A, Hromadkova Z, Tarantilis PA, Ebringerova A, Polissiou MG. Carbohydr. Polym. 2004; 56: 465

      For selected reviews of transition-metal-catalyzed C–H activation, see:
    • 2a Lewis JC, Bergman RG, Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 2b Whited MT, Grubbs RH. Acc. Chem. Res. 2009; 42: 1607
    • 2c Parkin G. Acc. Chem. Res. 2009; 42: 10830
    • 2d Li C. Acc. Chem. Res. 2009; 42: 335
    • 2e Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2f Bellina F, Rossi R. Chem. Rev. 2010; 110: 1082
    • 2g Daugulis O. Top. Curr. Chem. 2010; 292: 57
    • 2h Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
    • 2i Conejero S, Paneque M, Poveda ML, Santos LL, Carmona E. Acc. Chem. Res. 2010; 43: 572
    • 2j Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 3a Liu H, Shi G, Pan S, Jiang Y, Zhang Y. Org. Lett. 2013; 15: 4098
    • 3b Suârez JR, Chiara JL. Chem. Commun. 2013; 49: 9194
    • 3c Wang N, Li R, Li L, Xu S, Song H, Wang B. J. Org. Chem. 2014; 79: 5379
    • 3d Chen C, Xu X, Yang B, Qing F. Org. Lett. 2014; 16: 3372
    • 4a Xue Q, Xie J, Li H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 3700
    • 4b Badsara SS, Liu Y, Hsieh P, Zeng J, Lu S, Liu Y, Lee C. Chem. Commun. 2014; 50: 11374
    • 4c Guntreddi T, Vanjari R, Singh KN. Tetrahedron 2014; 70: 3887
    • 4d Yuan J, Ma X, Yi H, Liu C, Lei A. Chem. Commun. 2014; 50: 14386
    • 5a Gao X, Zhang F, Deng G, Yang L. Org. Lett. 2014; 16: 3664
    • 5b He C, Zhang X, Huang R, Pan J, Li J, Ling X, Xiong Y, Zhu X. Tetrahedron Lett. 2014; 55: 4458
    • 6a Wohl A. Ber. Dtsch. Chem. Ges. 1919; 52: 51
    • 6b Ziegler K. Justus Liebigs Ann. Chem. 1942; 551: 30
    • 6c Koten IA, Sauer RJ. Org. Synth. Coll. Vol. 5 . John Wiley & Sons; London: 1973: 145
    • 7a Tsuchiya D, Kawagoe Y, Moriyama K, Togo H. Org. Lett. 2013; 15: 4194
    • 7b Kawagoe Y, Moriyama K, Togo H. Eur. J. Org. Chem. 2014; 4115