Synthesis 2015; 47(17): 2586-2592
DOI: 10.1055/s-0034-1380206
paper
© Georg Thieme Verlag Stuttgart · New York

Deoxygenation of Phenolic Alkaloids by a Modified Pd/C-Catalyzed Hydrogenolysis Method

Chin-Ting Lin
School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist., Taipei 100, Taiwan ROC   Email: shoeilee@ntu.edu.tw
,
Shoie-Sheng Lee*
School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist., Taipei 100, Taiwan ROC   Email: shoeilee@ntu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 12 February 2015

Accepted after revision: 02 April 2015

Publication Date:
07 May 2015 (online)


Abstract

A modified palladium on carbon (Pd/C) catalyzed hydrogenolysis method for the removal of the phenolic-OH group in phenolic alkaloids as the 1-phenyl-1H-tetrazol-5-yl derivative by the addition of magnesium metal or ammonium acetate in acetic acid is described. Five different types of isoquinoline alkaloids, i.e., phenanthrene alkaloid, aporphine, pavine, protoberberine, and 1-benzyltetrahydroisoquinoline, were used as reactants. The results indicate that the addition of either magnesium metal or ammonium acetate has the advantage of decreasing the amount of Pd/C and the accelerating reaction rate over the simple Pd/C-catalyzed hydrogenolysis, thus it is practical for larger-scale preparation of de-phenolated alkaloids for pharmacological study.

Supporting Information

 
  • References

    • 2a Clauss K, Jensen H. Angew. Chem. Int. Ed. 1973; 12: 918
    • 2b Lonsky W, Traitler H, Kratzl K. J. Chem. Soc., Perkin Trans. 1 1975; 169
    • 2c Cacchi S, Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1986; 27: 5541
    • 2d Chen QY, He YB, Yang ZY. J. Chem. Soc., Chem. Commun. 1986; 1452
    • 2e Peterson GA, Kunng FA, McCallum JS, Wulff WD. Tetrahedron Lett. 1987; 28: 1381
    • 2f Cabri W, Debernardinis S, Francalanci F, Penco S, Santi R. J. Org. Chem. 1990; 55: 350
    • 2g Saa JM, Dopico M, Martorell G, Garciaraso A. J. Org. Chem. 1990; 55: 991
    • 2h Sasaki K, Sakai M, Sakakibara Y, Takagi K. Chem. Lett. 1991; 2017
    • 2i Kotsuki H, Datta PK, Hayakawa H, Suenaga H. Synthesis 1995; 1348
    • 2j Lipshutz BH, Buzard DJ, Vivian RW. Tetrahedron Lett. 1999; 40: 6871
  • 3 Sajiki H, Mori A, Mizusaki T, Ikawa T, Maegawa T, Hirota K. Org. Lett. 2006; 8: 987
  • 4 Sebok P, Timar T, Eszenyi T, Patonay T. J. Org. Chem. 1994; 59: 6318
    • 5a Pirkle WH, Zabriskie JL. J. Org. Chem. 1964; 29: 3124
    • 5b Sartoretto PA, Sowa FJ. J. Am. Chem. Soc. 1937; 59: 603
    • 6a Musliner WJ, Gates JW. Jr. J. Am. Chem. Soc. 1966; 88: 4271
    • 6b Hussey BJ, Johnstone RA. W, Entwistle ID. Tetrahedron 1982; 38: 3775
    • 7a Pelletier SW, Locke DM. J. Org. Chem. 1958; 23: 131
    • 7b Rossi RA, Bunnett JF. J. Org. Chem. 1973; 38: 2314
    • 7c Shafer SJ, Closson WD, Vandijk JM. F, Piepers O, Buck HM. J. Am. Chem. Soc. 1977; 99: 5118
    • 7d Welch SC, Walters ME. J. Org. Chem. 1978; 43: 4797
    • 7e Shono T, Matsumura Y, Tsubata K, Sugihara Y. J. Org. Chem. 1979; 44: 4508
    • 8a Lu ST, Wu YC, Leou SP. Phytochemistry 1985; 24: 1829
    • 8b Cannon JG, Mohan P, Bojarski J, Long JP, Bhatnagar RK, Leonard PA, Flynn JR, Chatterjee TK. J. Med. Chem. 1988; 31: 313
    • 8c Amaravathi M, Pardhasaradhi M. Synth. Commun. 1990; 20: 789
    • 8d Olugbade TA, Waigh RD, Mackay SP. J. Chem. Soc., Perkin Trans. 1 1990; 2657
    • 8e Newman AH, Bevan K, Bowery N, Tortella FC. J. Med. Chem. 1992; 35: 4135
    • 8f Cannon JG, Raghupathi R, Moe ST, Johnson AK, Long JP. J. Med. Chem. 1993; 36: 1316
    • 8g Grauert M, Bechtel WD, Ensinger HA, Merz H, Carter AJ. J. Med. Chem. 1997; 40: 2922
    • 8h Tadic D, Linders JT. M, Flippen-Anderson JL, Jacobson AE, Rice KC. Tetrahedron 2003; 59: 4603
    • 8i Spetea M, Schullner F, Moisa RC, Berzetei-Gurske IP, Schraml B, Dorfler C, Aceto MD, Harris LS, Coop A, Schmidhammer H. J. Med. Chem. 2004; 47: 3242
  • 9 Starting from litebamine (1) and following the procedure in ref. 10 gave poor yield of the bistriflate product, accompanied with unreacted 1 as the major component, while replacement of Et3N with K2CO3 led to a better yield. The detailed procedure follows: A mixture of 1 (51.8 mg, 0.15 mmol), N-phenyl-bis(trifluoromethanesulfonimide) (140.5 mg, 0.40 mmol), and K2CO3 (76.5 mg, 0.55 mmol) in DMF (1 mL) was stirred at r.t. for 1 d. The mixture was diluted with CHCl3 (10 mL), washed with H2O (3 × 3 mL), and evaporated to dryness. The residue was chromatographed (silica gel, 3.6 g, 0−20% MeOH−CHCl3, saturated with 25% aq NH3) to yield 3,7-O,O-bistriflyl litebamine ether (14.8 mg, 16%) as a yellowish oil.
  • 10 Si YG, Gardner MP, Tarazi FI, Baldessarini RJ, Neumeyer JL. J. Med. Chem. 2008; 51: 983
  • 11 8/9-Hydroxy-2,3-dimethoxypavine (3) was synthesized from O-methylcaryachine by reductive cleavage of methylenedioxy group with Na/liquid ammonia following the procedure: Lee SS, Lin CY, Chen CH. J. Chin. Chem. Soc. 1991; 38: 389 ; 1H NMR (80 MHz, CDCl3): δ = 6.60–6.90 (m, 3 H, H7,8(9),10), 6.87 (d, J = 8.4 Hz, 1 H, H12), 6.57 (s, 1 H, H1), 6.38 (s, 1 H, H4), 3.80 (s, 3 H, 2-OMe), 3.83 (s, 3 H, 3-OMe), 2.46 (s, 3 H, NMe). MS (EI): m/z = 311 (70) ([M]+), 310 (42), 204 (65), 160 (100).
  • 12 Mori A, Mizusaki T, Ikawa T, Maegawa T, Monguchi Y, Sajiki H. Chem. Eur. J. 2007; 13: 1432
  • 13 Lee SS, Chiou CM, Lin HY, Chen CH. Tetrahedron Lett. 1995; 36: 1531
  • 14 Lee SS, Dung KT. Chin. Pharm. J. 1991; 43: 303
  • 15 Lee SS, Yang HC. J. Chin. Chem. Soc. 1992; 39: 189