Synthesis 2015; 47(15): 2299-2316
DOI: 10.1055/s-0034-1380215
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Total Synthesis of the Diastereomeric Tricyclic Alkaloids Tetraponerine-7 and Tetraponerine-8 Using O-Pivalo­ylated d-Arabinopyranosylamine as the Common Auxiliary

Irina Strassnig
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: hokunz@uni-mainz.de
,
Karsten Körber
b   GBA/IO, Global Research Insecticide Chemistry, Crop Protection, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
,
Udo Hünger
c   E-EDK/K, Global Key Account Management, BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany
,
Horst Kunz*
a   Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany   Email: hokunz@uni-mainz.de
› Author Affiliations
Further Information

Publication History

Received: 23 March 2015

Accepted after revision: 21 April 2015

Publication Date:
11 June 2015 (online)


Dedicated to Professor Richard R. Schmidt on the occasion of his 80th birthday

Abstract

Based on a diastereoselective domino Mannich–Michael reaction cascade of 2-N-[(S)-3-{(benzyloxycarbonyl)[4-(tert-butyldiphenylsiloxy)butyl]amino}octylidene]-2,3,4-tri-O-pivaloyl-α-d-arabinopyranosylamine with the Danishefsky diene, the major component of the neurotoxic venom of the New Guinean ant Tetraponera punctulata, tetraponerine-8, and its diastereomer tetraponerine-7 were synthesized in pure form. While the Mannich reaction of the arabinosyl imine of the required (S)-configured β-aminoaldehyde gave the 2-substituted piperidinone precursor of tetraponerine-8 with excellent diastereoselectivity, the analogous Mannich reaction of the (R)-configured β-aminoaldehyde afforded the precursor of tetraponerine-7 with a selectivity of only 2:1 (mismatched case). The enantiomerically pure tetraponerine-8, described as highly toxic for ants, exhibited only moderate toxicity to sucking and stinging insects.

Supporting Information

 
  • References

  • 1 Braekman JC, Daloze D, Pasteels JM, Vanhecke P, Declercq JP, Sinnwell V, Francke W. Z. Naturforsch., C 1987; 42: 627
  • 2 Merlin P, Braekman JC, Daloze D, Pasteels JM. J. Chem. Ecol. 1988; 14: 517
  • 3 Yue C, Royer J, Husson HP. J. Org. Chem. 1990; 55: 1140
  • 4 Macours P, Braekman JC, Daloze D. Tetrahedron 1995; 51: 1415
  • 5 Devijver C, Macours P, Braekman JC, Daloze D, Pasteels JM. Tetrahedron 1995; 51: 10913
  • 6 Kem WR, Wildeboer K, LeFrancois S, Raja M, Marszalec W, Braekman JC. Cell. Mol. Neurobiol. 2004; 24: 535
  • 7 Rouchaud A, Braekman JC. Eur. J. Org. Chem. 2009; 2666
    • 8a Merlin P, Braekman JC, Daloze D. Tetrahedron Lett. 1988; 29: 1691
    • 8b Merlin P, Braekman JC, Daloze D. Tetrahedron 1991; 47: 3805
    • 8c Pleheiers M, Heilporn S, Ekelmans D, Leclercq S, Sangermano M, Breakman JC, Daloze D. Can. J. Chem. 2000; 78: 1030
    • 9a Jones TH. Tetrahedron Lett. 1990; 31: 4543
    • 9b Barluenga J, Tomas M, Kouznetsov V, Rubio E. J. Org. Chem. 1994; 59: 3699
    • 9c Kim JT, Gevorgyan V. Org. Lett. 2002; 4: 4697
    • 9d Charette AB, Mathieu S, Martel J. Org. Lett. 2005; 7: 5401
    • 10a Yue C, Gauthier I, Royer J, Husson H.-P. J. Org. Chem. 1996; 61: 4949
    • 10b Takahata H, Kubota M, Ikota N. J. Org. Chem. 1999; 64: 8594
    • 10c Stragies R, Blechert S. J. Am. Chem. Soc. 2000; 122: 9584
    • 10d Airian E, Girard N, Pizetti M, Salvadori J, Taddei M, Mann A. J. Org. Chem. 2010; 75: 8670
  • 11 Bosque I, Gonzalez-Gomez JC, Guijarro A, Foubelo F, Yus M. J. Org. Chem. 2012; 77: 10340
  • 12 Gonzalez-Gomez JC, Medjahdi M, Foubelo F, Yus M. J. Org. Chem. 2010; 75: 6308
  • 13 Bosque I, Gonzalez-Gomez JC, Loza MI, Brea M. J. Org. Chem. 2014; 79: 3982
    • 15a Kunz H, Pfrengle W. Angew. Chem. 1989; 101: 1041 ; Angew. Chem., Int. Ed. Engl. 1989, 28, 1067
    • 15b Kranke B, Hebrault D, Schultz-Kukula M, Kunz H. Synlett 2004; 671
    • 15c Kranke B, Kunz H. Org. Biomol. Chem. 2007; 5: 349
  • 16 Danishefsky S, Kitahara T. J. Am. Chem. Soc. 1974; 96: 7807
  • 17 Bollbuck B, Kraft P, Tochtermann W. Tetrahedron 1996; 52: 4581
  • 18 Michael JP, Gravestock D. J. Chem. Soc., Perkin Trans. 1 2000; 1919
  • 19 Steglich W, Höfle G. Angew. Chem. 1969; 81: 1001 ; Angew. Chem., Int. Ed. Engl. 1969, 8, 981
  • 20 Davies SG, Ichihara O. Tetrahedron: Asymmetry 1991; 2: 183
  • 21 Davies SG, Garrido NM, Kruchinin D, Ichihara O, Kotchie LJ, Price PD, Mortimer AJ. P, Russell AJ, Smith AD. Tetrahedron: Asymmetry 2006; 17: 1793
  • 22 Freeman F, Kim DS. H. L, Rodriguez E. J. Org. Chem. 1992; 57: 1722
  • 23 Katoh T, Itoh E, Yoshino T, Terashima S. Tetrahedron 1997; 53: 10229
  • 24 Kikuchi H, Yamamoto K, Horoiwa S, Hirai S, Kasahara R, Hariguchi N, Matsumoto M, Oshima Y. J. Med. Chem. 2006; 49: 4698
  • 25 Mancuso AJ, Swern D. Synthesis 1981; 165
  • 26 Kranke B, Kunz H. Can. J. Chem. 2006; 84: 625
    • 27a Klegraf E, Follmann M, Schollmeyer D, Kunz H. Eur. J. Org. Chem. 2004; 3346
    • 27b Knauer S, Kunz H. Tetrahedron: Asymmetry 2005; 16: 529
  • 28 Barton DH. R, McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
  • 29 Chiu CK. F. Tetrahedron: Asymmetry 1995; 6: 881
  • 30 Denmark SE, Henke BR. J. Am. Chem. Soc. 1991; 113: 2177
  • 31 Kitagawa H, Kumura K, Atsumi K. Chem. Lett. 2006; 35: 712
  • 32 Alonso E, Ramon DJ, Yus M. J. Org. Chem. 1997; 62: 417
  • 33 Tojo G, Fernández M. Oxidation of Alcohols to Aldehydes and Ketones . Springer; New York: 2006
  • 34 Winkler JD, Hershberger PM. J. Am. Chem. Soc. 1989; 111: 4852
  • 35 Ley SV, Norman J, Griffith WP, Marsden SP. Synthesis 1994; 639
  • 36 Itoh T, Yamazaki N, Kibayashi C. Org. Lett. 2002; 4: 2469
  • 37 Deloisy S, Tietgen H, Kunz H. Collect. Czech. Chem. Commun. 2000; 65: 816