Synlett 2015; 26(11): 1480-1485
DOI: 10.1055/s-0034-1381039
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient, Scalable Syntheses of Linker Molecules for Metal-Organic Frameworks

Knut T. Hylland
Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, 0315 Oslo, Norway   Email: mats.tilset@kjemi.uio.no
,
Sigurd Øien-Ødegaard
Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, 0315 Oslo, Norway   Email: mats.tilset@kjemi.uio.no
,
Karl Petter Lillerud
Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, 0315 Oslo, Norway   Email: mats.tilset@kjemi.uio.no
,
Mats Tilset*
Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, 0315 Oslo, Norway   Email: mats.tilset@kjemi.uio.no
› Author Affiliations
Further Information

Publication History

Received: 18 March 2015

Accepted after revision: 29 May 2015

Publication Date:
15 June 2015 (online)


Dedicated to Professor K. Peter C. Vollhardt on the occasion of his 69th birthday and 25 years of service to SYNLETT

Abstract

Efficient synthesis protocols for five linkers of immediate interest for use in metal-organic frameworks (MOFs) are presented. The importance of scalable, cost-effective, high-yield processes with simple purifications and few steps is emphasized. The protocols allow for the efficient synthesis of biphenyl-, terphenyl-, and quaterphenyl-based linkers. Four of the linkers have been structurally characterized.

Supporting Information

 
  • References and Notes

  • 1 Long JR, Yaghi OM. Chem. Soc. Rev. 2009; 38: 1213
  • 2 Horike S, Kitagawa S In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage . Farrusseng D. Wiley-VCH; Weinheim: 2011: 1-21
  • 3 Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T.-H, Long JR. Chem. Rev. 2012; 112: 724
  • 4 Li J.-R, Sculley J, Zhou H.-C. Chem. Rev. 2012; 112: 869
  • 5 Li B, Wen H.-M, Zhou W, Chen B. J. Phys. Chem. Lett. 2014; 5: 3468
  • 6 Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SB. T, Hupp JT. Chem. Soc. Rev. 2009; 38: 1450
  • 7 Wang C, Xie Z, deKrafft KE, Lin W. J. Am. Chem. Soc. 2011; 133: 13445
  • 8 Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Chem. Rev. 2012; 112: 1232
  • 9 Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem. Rev. 2012; 112: 1105
  • 10 Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. J. Am. Chem. Soc. 2008; 130: 13850
  • 11 Øien S, Wragg D, Reinsch H, Svelle S, Bordiga S, Lamberti C, Lillerud KP. Cryst. Growth Des. 2014; 14: 5370
  • 12 Kim M, Cohen SM. CrystEngComm 2012; 14: 4096
  • 13 Czaja A, Leung E, Trukhan N, Müller U In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage . Farrusseng D. Wiley-VCH; Weinheim: 2011: 337-352
  • 14 Czaja AU, Trukhan N, Müller U. Chem. Soc. Rev. 2009; 38: 1284
  • 15 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science 2013; 341: 1230444-1
  • 16 Lu W, Wei Z, Gu Z.-Y, Liu T.-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle IiiT, Bosch M, Zhou H.-C. Chem. Soc. Rev. 2014; 43: 5561
  • 17 Almeida Paz FA, Klinowski J, Vilela SM. F, Tome JP. C, Cavaleiro JA. S, Rocha J. Chem. Soc. Rev. 2012; 41: 1088
  • 18 Farha OK, Wilmer CE, Eryazici I, Hauser BG, Parilla PA, O’Neill K, Sarjeant AA, Nguyen ST, Snurr RQ, Hupp JT. J. Am. Chem. Soc. 2012; 134: 9860
  • 19 Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ. Nat. Chem. 2012; 4: 83
  • 20 Nguyen JG, Cohen SM. J. Am. Chem. Soc. 2010; 132: 4560
  • 21 ul Qadir N, Said SA. M, Bahaidarah HM. Microporous Mesoporous Mater. 2015; 201: 61
  • 22 Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Chem. Soc. Rev. 2014; 43: 5594
  • 23 Huang Y, Qin W, Li Z, Li Y. Dalton Trans. 2012; 41: 9283
  • 24 Wang Z, Cohen SM. Chem. Soc. Rev. 2009; 38: 1315
  • 25 Gadzikwa T, Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT, Nguyen ST. J. Am. Chem. Soc. 2009; 131: 13613
  • 26 Vermeulen NA, Karagiaridi O, Sarjeant AA, Stern CL, Hupp JT, Farha OK, Stoddart JF. J. Am. Chem. Soc. 2013; 135: 14916
  • 27 Morris W, Doonan CJ, Yaghi OM. Inorg. Chem. 2011; 50: 6853
  • 28 Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud KP, Tilset M. J. Mater. Chem. 2010; 20: 9848
  • 29 Li J.-R, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong H.-K, Balbuena PB, Zhou H.-C. Coord. Chem. Rev. 2011; 255: 1791
  • 30 McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, Bordiga S, Reimer JA, Long JR. Nature (London, U.K.) 2015; 519: 303
  • 31 Schaate A, Roy P, Preusse T, Lohmeier SJ, Godt A, Behrens P. Chem. Eur. J. 2011; 17: 9320
  • 32 Ehmer A, Jahr K, Kuschinsky G, Luellmann H, Mutschler E, Wollert U. Arzneim. Forsch. 1964; 14: 1273
  • 33 Horcajada P, Salles F, Wuttke S, Devic T, Heurtaux D, Maurin G, Vimont A, Daturi M, David O, Magnier E, Stock N, Filinchuk Y, Popov D, Riekel C, Férey G, Serre C. J. Am. Chem. Soc. 2011; 133: 17839
  • 34 Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM. J. Am. Chem. Soc. 2008; 130: 11650
  • 35 Nising CF, Schmid UK, Nieger M, Bräse S. J. Org. Chem. 2004; 69: 6830
  • 36 Synthesis of Diethyl 2′,3′′-Dimethyl-[1,1′:4′,1′′:4′′,1′′′-quaterphenyl]-4,4′′′-dicarboxylate (2e) To a 100 mL Schlenk flask were added 3a (3.21 g, 7.39 mmol, 1.0 equiv), 2d (3.76 g, 19.4 mmol, 2.6 equiv), K2CO3 (6.15 g, 44.5 mmol, 6.0 equiv), Pd(OAc)2 (0.039 g, 0.180 mmol, 0.0240 equiv), Ph3P (0.195 g, 0.740 mmol, 0.100 equiv), and DMF (55 mL). The pale yellow suspension was flushed with argon for 30 min, before it was heated at 95 °C for 24 h under argon. The reaction mixture, which had turned black/dark brown, was cooled to r.t. and poured into a mixture of ice and H2O (ca. 300 mL). The brown solid was filtered and washed with H2O, then dried at r.t. for 3 h, before it was dissolved in CH2Cl2 (300 mL). The solution was washed with 3 M HCl (aq, 200 mL) and brine (200 mL) and dried with Na2SO4, before it was filtered through celite. The celite was washed with additional CH2Cl2 (10 × 30 mL). Removal of the solvent under reduced pressure yielded a pale brown solid which was recrystallized from MeCN. This gave 2e as a colorless solid. Yield 2.73 g, 5.71 mmol, 77%, mp (MeCN): 151–152 °C. 1H NMR (600 MHz, CDCl3): δ = 8.12 (d, J = 7.8 Hz, 4 H), 7.56 (d, J = 1.8 Hz, 2 H), 7.53 (dd, Jo  = 7.8 Hz, Jm  = 1.8 Hz, 2 H), 7.45 (d, J = 7.8 Hz, 4 H), 7.33 (d, J = 7.8 Hz, 2 H), 4.42 (q, J = 7.2 Hz, 4 H), 2.36 (s, 6 H), 1.43 (t, J = 7.2 Hz, 6 H). 13C NMR (150 MHz, CDCl3): δ = 166.5 (C), 146.2 (C), 140.2 (C), 140.1 (C), 135.7 (C), 130.1 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 129.1 (C), 124.6 (CH), 61.0 (CH2), 20.6 (CH3), 14.4 (CH3). IR (KBr): 1714.7, 1606.4, 1284.2, 1102.1, 776.9 cm–1. MS (EI, CH2Cl2): m/z = 478 (100) [M]+, 433 (12) [M+ – OEt], 194 (6). HRMS (CH2Cl2): m/z calcd for C32H30O4: 478.214410 (–3.4 ppm); found: 478.212763. Synthesis of 2′,3′′-Dimethyl-[1,1′:4′,1′′:4′′,1′′′-quaterphenyl]-4,4′′′-dicarboxylic Acid (1e) A suspension of 2e (2.08 g, 4.34 mmol, 1.0 equiv) and KOH (1.30 g, 23.2 mmol, 5.3 equiv) in a mixture of 1,4-dioxane (25 mL) and H2O (30 mL) was heated at reflux for 18 h. After cooling to r.t., the solvent was removed under reduced pressure. H2O (150 mL) was added to the resulting solid. The mixture was heated at reflux until the solid dissolved, and the solution was filtered while hot to remove insoluble impurities. Concentrated HCl (37%) was then added to the hot solution until pH = 1 with the formation of a colorless solid. After cooling to r.t., the solid was filtered and washed several times with H2O, before it was air-dried overnight. The solid was then crushed to a powder, suspended in H2O (200 mL) and stirred at r.t. for 1 h. Filtration, followed by washing with H2O and drying at 100 °C for 24 h, gave 1e as colorless solid. Yield 1.57 g, 3.71 mmol, 85%; mp (H2O): >310 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 13.01 (br s, 2 H, CO2H), 8.02 (d, J = 8.0 Hz, 4 H), 7.70 (d, J = 2.0 Hz, 2 H), 7.63 (dd, Jo  = 8.0 Hz, Jm  = 2.0 Hz, 2 H), 7.53 (d, J = 8.0 Hz, 4 H), 7.33 (d, J = 8.0 Hz, 2 H), 2.33 (s, 6 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 167.2 (C), 145.4 (C), 139.5 (C), 139.1 (C), 135.4 (C), 130.1 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 128.8 (C), 124.3 (CH), 20.3 (CH3). IR (KBr): 2927.2, 1681.0, 1607.6, 1431.0, 1297.5, 1320.2 cm–1. MS (EI, DMSO): m/z = 422 (100) [M]+, 378 (7) [M+ – CO2]. HRMS (DMSO): m/z calcd for C16H14O4: 422.151809 (2.8 ppm); found: 422.150624.
  • 37 CCDC 1053020-1053023 contain the supplementary crystallographic data for 1a, 1b, 1d, and 1e. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 38 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; S1