Planta Med 2015; 81(06): 429-435
DOI: 10.1055/s-0034-1396322
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Chemography of Natural Product Space

Tomoyuki Miyao*
1   Department of Chemical Systems Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
2   Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
,
Daniel Reker*
2   Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
,
Petra Schneider
2   Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
,
Kimito Funatsu
1   Department of Chemical Systems Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
,
Gisbert Schneider
2   Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

received 08 July 2014
revised 28 November 2014

accepted 12 January 2015

Publication Date:
26 February 2015 (online)

Abstract

We present the application of the generative topographic map algorithm to visualize the chemical space populated by natural products and synthetic drugs. Generative topographic maps may be used for nonlinear dimensionality reduction and probabilistic modeling. For compound mapping, we represented the molecules by two-dimensional pharmacophore features (chemically advanced template search descriptor). The results obtained suggest a close resemblance of synthetic drugs with natural products in terms of their pharmacophore features, despite pronounced differences in chemical structure. Generative topographic map-based cluster analysis revealed both known and new potential activities of natural products and drug-like compounds. We conclude that the generative topographic map method is suitable for inferring functional similarities between these two classes of compounds and predicting macromolecular targets of natural products.

* These authors contributed equally to this work.


 
  • References

  • 1 Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4: 206-220
  • 2 Harvey AL. Natural products in drug discovery. Drug Discov Today 2008; 13: 894-901
  • 3 Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008; 12: 306-317
  • 4 Paterson I, Anderson EA. The renaissance of natural products as drug candidates. Science 2005; 310: 451-453
  • 5 Picket S. The biophore concept. In: Böhm HJ, Schneider G, editors Protein-ligand interactions: from molecular recognition to drug design. Weinheim: Wiley-VCH; 2003: 73-105
  • 6 Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66: 1022-1037
  • 7 Basmadjian C, Zhao Q, Bentouhami E, Djehal A, Nebigil CG, Johnson RA, Serova M, de Gramont A, Faivre S, Raymond E, Désaubry LG. Cancer wars: natural products strike back. Front Chem 2014; 2: 20
  • 8 Grienke U, Mihály-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM. Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum . Bioorg Med Chem 2011; 19: 6779-6791
  • 9 Rollinger JM, Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, Gertsch J, Raduner S, Wolber G, Langer T, Stuppner H. In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens . Planta Med 2009; 75: 195-204
  • 10 Hufsky F, Scheubert K, Böcker S. New kids on the block: novel informatics methods for natural product discovery. Nat Prod Rep 2014; 31: 807-817
  • 11 Reker D, Perna AM, Rodrigues T, Schneider P, Reutlinger M, Mönch B, Koeberle A, Lamers C, Gabler M, Steinmetz H, Müller R, Schubert-Zsilavecz M, Werz O, Schneider G. Revealing the macromolecular targets of complex natural products. Nat Chem 2014; 6: 1072-1078
  • 12 Oprea TI, Gottfries J. Chemography: the art of navigating in chemical space. J Comb Chem 2001; 3: 157-166
  • 13 Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. Weinheim: Wiley-VCH; 2009
  • 14 Reutlinger M, Schneider G. Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model 2012; 34: 108-117
  • 15 Ivanenkov YA, Savchuk NP, Ekins S, Balakin KV. Computational mapping tools for drug discovery. Drug Discov Today 2009; 14: 767-775
  • 16 Reutlinger M, Rodrigues T, Schneider P, Schneider G. Multi-objective molecular de novo design by adaptive fragment prioritization. Angew Chem Int Ed Engl 2014; 53: 4244-4248
  • 17 Lachance H, Wetzel S, Kumar K, Waldmann H. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 2012; 55: 5989-6001
  • 18 Wetzel S, Schuffenhauer A, Roggo S, Ertl P, Waldmann H. Cheminformatic analysis of natural products and their chemical space. Chimia 2007; 61: 355-360
  • 19 Grabowski K, Baringhaus KH, Schneider G. Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 2008; 25: 892-904
  • 20 Lee ML, Schneider G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 2001; 3: 284-289
  • 21 Olah M, Mracec M, Ostopovici L, Rad RF, Bora A, Hadaruga N, Olah I, Banda M, Simon Z, Mracec M, Oprea TI. WOMBAT: World of Molecular Bioactivity. In: Oprea TI, editor Cheminformatics in drug discovery. New York: Wiley -VCH; 2005: 223-239
  • 22 Rosen J, Gottfries J, Muresan S, Backlund A, Oprea TI. Novel chemical space exploration via natural products. J Med Chem 2009; 52: 1953-1962
  • 23 Bishop CM, Svensen M, Williams CKI. GTM: The generative topographic mapping. Neural Comput 1998; 10: 215-234
  • 24 Hasegawa K, Funatsu K. Prediction of protein-protein interaction pocket using L-shaped PLS approach and its visualizations by generative topographic mapping. Mol Inf 2014; 33: 65-72
  • 25 Kireeva N, Baskin II, Gaspar HA, Horvath D, Marcou G, Varnek A. Generative Topographic Mapping (GTM): universal tool for data visualization, structure-activity modeling and dataset comparison. Mol Inf 2012; 31: 301-312
  • 26 Ovchinnikova SI, Bykov AA, Tsivadze AY, Dyachkov EP, Kireeva NV. Supervised extensions of chemography approaches: case studies of chemical liabilities assessment. J Cheminform 2014; 6: 20
  • 27 Bishop CM, Svensen M, Williams CKI. GTM: a principal alternative to the self-organizing map. In: Mozer MC, Jordan MI, Petsche T, editors Advances in neural Information Processing Systems 9: Proceedings of the 1996 Conference. Cambridge (MA): MIT Press; 1997: 354-360
  • 28 Kruskal JB. Multidimensional-scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964; 29: 1-27
  • 29 Frey BJ, Jojic N. A comparison of algorithms for inference and learning in probabilistic graphical models. IEEE Trans Pattern Anal Mach Intell 2005; 27: 1392-1416
  • 30 Schneider P, Schneider G. Collection of bioactive reference compounds for focused library design. QSAR Comb Sci 2003; 22: 713-718
  • 31 Reutlinger M, Koch CP, Reker D, Todoroff N, Schneider P, Rodrigues T, Schneider G. Chemically Advanced Template Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for ʼOrphanʼ Molecules. Mol Inf 2013; 32: 133-138
  • 32 Schneider G, Neidhart W, Giller T, Schmid G. “Scaffold-hopping” by topological pharmacophore search: A contribution to virtual screening. Angew Chem Int Ed Engl 1999; 38: 2894-2896
  • 33 Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012; 40: 1100-1107
  • 34 Wesołowska A, Nikiforuk A, Michalska K, Kisiel W, Chojnacka-Wójcik E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J Ethnopharmacol 2006; 107: 254-258
  • 35 Zhang Q, Lu YX, Ding YH, Zhai JD, Ji Q, Ma WW, Yang M, Fan HX, Long J, Tong ZS, Shi YH, Jia YS, Han B, Zhang WP, Qiu CJ, Ma XY, Li QY, Shi QQ, Zhang HL, Li DM, Zhang J, Lin JP, Li LY, Gao YD, Chen Y. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem 2012; 55: 8757-8769
  • 36 Chen KS, Wu CC, Chang FR, Chia YC, Chiang MY, Wang WY, Wu YC. Bioactive coumarins from the leaves of Murraya omphalocarpa . Planta Med 2003; 69: 654-657
  • 37 Koo JYM, Maloney J. Drug therapy of psoriasis. In: Millikan LE, editor Drug therapy in dermatology. New York: Marcel Dekker; 2000: 305-322
  • 38 Palomer A, Princep M, Guglietta A. Recent advances in the treatment of insomnia. In: Macor JE, editor Annual reports in medicinal chemistry, Vol 42. San Diego: Elsevier Academic Press Inc.; 2007: 63-80
  • 39 Reker D, Rodrigues T, Schneider P, Schneider G. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 2014; 111: 4067-4072
  • 40 Birch AJ, Collins DJ, Muhammad S, Turnbull J. The structure of flindissol. Some remarks on the elemi acids. J Chem Soc 1963; 2762-2772
  • 41 Norman AW. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 2006; 147: 5542-5548
  • 42 Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21: 319-329
  • 43 Guan XM, Peroutka SJ, Kobilka BK. Identification of a single amino acid residue responsible for the binding of a class of beta-adrenergic receptor antagonists to 5-hydroxytryptamine 1A receptors. Mol Pharmacol 1992; 41: 695-698
  • 44 Hirata T, Keto Y, Funatsu T, Akuzawa S, Sasamata M. Evaluation of the pharmacological profile of ramosetron, a novel therapeutic agent for irritable bowel syndrome. J Pharmacol Sci 2007; 104: 263-273
  • 45 Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC. Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 1992; 262: 759-768
  • 46 Maniyar DM, Nabney IT, Williams BS, Sewing A. Data visualization during the early stages of drug discovery. J Chem Inf Model 2006; 46: 1806-1818
  • 47 Aursand M, Standal IB, Axelson DE. High-resolution 13C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J Agric Food Chem 2007; 55: 38-47
  • 48 Owen JR, Nabney IT, Medina-Franco JL, López-Vallejo F. Visualization of molecular fingerprints. J Chem Inf Model 2011; 51: 1552-1563
  • 49 The Chapmann & Hall/CRC Chemical Database Dictionary of Natural Products. Chapman and Hall/CRC. Available at http://dnp.chemnetbase.com/
  • 50 Berthold MR, Cebron N, Dill F, Gabriel TR, Koetter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B. KNIME: The Konstanz Information Miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, editors Data analysis, machine learning and applications. Berlin: Springer; 2008: 319-326
  • 51 Svensen M. The GTM Toolbox – Userʼs Guide, Neural Computing Research Group. Birmingham: Aston University; 1999