Synlett 2015; 26(18): 2512-2516
DOI: 10.1055/s-0035-1560261
letter
© Georg Thieme Verlag Stuttgart · New York

A Convenient Access to Novel Amino-Hydroxy-Methyl Stereo­triads Containing an E-Trisubstituted Vinyl Iodide Unit

Mathilde Corbin
PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: phannarath.phansavath@chimie-paristech.fr
,
Charlène Férard
PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: phannarath.phansavath@chimie-paristech.fr
,
Phannarath Phansavath*
PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France   Email: phannarath.phansavath@chimie-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 10 July 2015

Accepted after revision: 11 August 2015

Publication Date:
17 September 2015 (online)


Abstract

Conversion of α-amino aldehydes into protected amino-hydroxy-methyl stereotriads carrying an E-trisubstituted vinyl iodide unit was effected by means of a three-step protocol: a Marshall reaction of the α-amino aldehyde with a chiral propargylic mesylate, a silylcupration of the corresponding homopropargylic alcohol and an iododesilylation reaction of the resulting vinylsilane. This sequence delivered the expected compounds as their oxazolidinone derivatives, providing a convenient diastereoselective access to useful building blocks for polypropionate synthesis and polyketide derivatives.

Supporting Information

 
  • References and Notes

  • 1 Plaza A, Baker HL, Bewley CA. J. Nat. Prod. 2008; 71: 473 ; correction: J. Nat. Prod. 2009, 72, 324
    • 2a Cantrell CL, Gustafson KR, Cecere MR, Pannell LK, Boyd MR. J. Am. Chem. Soc. 2000; 122: 8825
    • 2b Rashid MA, Cantrell CL, Gustafson KR, Boyd MR. J. Nat. Prod. 2001; 64: 1341
    • 2c Rashid MA, Gustafson KR, Boyd MR. Tetrahedron Lett. 2001; 42: 1623
    • 2d Chevallier C, Laprévote O, Bignon J, Debitus C, Guénard D, Sévenet T. Nat. Prod. Res. 2004; 18: 479
    • 3a Rashid MA, Gustafson KR, Crouch RC, Groweiss A, Pannell LK, Van QN, Boyd MR. Org. Lett. 2002; 4: 3293
    • 3b Takada K, Choi BW, Rashid MA, Gamble WR, Cardellina JH, Van QN, Loyd JR, McMahon JB, Gustafson KR. J. Nat. Prod. 2007; 70: 428
    • 3c Takemoto D, Takekawa Y, Van Soest RW. M, Fusetani N, Matsunaga S. Biosci. Biotechnol. Biochem. 2007; 71: 2697
    • 4a Pomey G, Phansavath P. Synthesis 2015; 47: 1016
    • 4b Echeverria P.-G, Prévost S, Cornil J, Férard C, Reymond S, Guérinot A, Cossy J, Ratovelomanana-Vidal V, Phansavath P. Org. Lett. 2014; 16: 2390
    • 4c Prévost S, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Adv. Synth. Catal. 2011; 353: 3213
    • 4d Prévost S, Gauthier S, Cano de Andrade MC, Mordant C, Touati AR, Lesot P, Savignac P, Ayad T, Phansavath P, Ratovelomanana-Vidal V, Genêt J.-P. Tetrahedron: Asymmetry 2010; 21: 1436
    • 4e Roche C, Desroy N, Haddad M, Phansavath P, Genet JP. Org. Lett. 2008; 10: 2796
    • 5a Marshall JA, Adams ND. J. Org. Chem. 1998; 63: 3812
    • 5b Marshall JA, Adams ND. J. Org. Chem. 1999; 64: 5201
    • 5c Marshall JA, Chobanian HR, Yanik MM. Org. Lett. 2001; 3: 3369
    • 5d Marshall JA. J. Org. Chem. 2007; 72: 8153
    • 5e Tamaru Y, Goto S, Tanaka A, Shimizu M, Kimura M. Angew. Chem. Int. Ed. 1996; 35: 878
  • 6 Marshall JA, Mulhearn JJ. Org. Lett. 2005; 7: 1593
    • 7a Marshall JA, Wang X. J. Org. Chem. 1992; 57: 1242
    • 7b Coleman RS, Lu X, Modolo I. J. Am. Chem. Soc. 2007; 129: 3826
    • 8a Fleming I, Newton TW, Roessier F. J. Chem. Soc., Perkin Trans. 1 1981; 2527
    • 8b Fleming I, Roberts RS, Smith SC. J. Chem. Soc., Perkin Trans. 1 1998; 1209
    • 8c Herrmann AT, Martinez SR, Zakarian A. Org. Lett. 2011; 13: 3636
    • 9a Ilardi EA, Stivala CE, Zakarian A. Org. Lett. 2008; 10: 1727
    • 9b Lu CD, Zakarian A. Org. Lett. 2007; 9: 3161
    • 9c Zakarian A, Batch A, Holton RA. J. Am. Chem. Soc. 2003; 125: 7822
  • 10 General Procedure for the Synthesis of Compounds 1 from Aldehydes 4: To a suspension of Pd(OAc)2 (24 mg, 0.107 mmol, 0.05 equiv) in THF (29 mL) at –78 °C were added Ph3P (28 mg, 0.107 mmol, 0.05 equiv) followed by a solution of (S)-pent-3-yn-2-yl methanesulfonate 3 (866 mg, 5.35 mmol, 2.5 equiv) in THF (14 mL) and a solution of the aldehyde 4 (2.14 mmol, 1 equiv) in THF (11 mL). A solution of Et2Zn (6.85 mL, 1 M in hexane, 6.85 mmol, 3.2 equiv) was then added over 2 h using a syringe pump. The resulting solution was allowed to warm to 0 °C, and stirred at this temperature for 2.5 h, then poured into a rapidly stirred mixture of Et2O, sat. NH4Cl and ice. The Et2O layer was separated, washed with sat. NH4Cl, dried (MgSO4), filtered and concentrated to give a brown oil. Purification of this residue by flash chromatography afforded 2. PhMe2SiLi (0.9 M solution in THF, 26.9 mL, 24.2 mmol, 20 equiv, prepared according to the method reported by Fleming et al.; see refs 8a and 8b) was added to a solution of CuCN (1.08 g, 12.1 mmol, 10 equiv) in THF (28 mL) at 0 °C. The reaction mixture was stirred for 1 h, then a solution of 2 (1.21 mmol, 1 equiv) in Et2O (40 mL) was added at –78 °C. After 90 min at –78 °C, the reaction mixture was allowed to warm to r.t. over 3.5 h and quenched with sat. NH4Cl–NH4OH (100 mL, 9:1). The biphasic mixture was warmed to r.t. (until a dark blue aqueous solution formed) and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with sat. NaHCO3 then brine, dried (MgSO4), filtered and concentrated. The residue was purified by flash chromatography to afford 5. To a solution of 5 (1 mmol, 1 equiv) and 2,6-lutidine (95 μL, 0.8 mmol, 0.8 equiv) in hexafluoroisopropanol (10 mL) was added at 0 °C N-iodosuccinimide (360 mg, 1.6 mmol, 2 equiv). The reaction was stirred for 1.5 h at 0 °C then a mixture of EtOAc–H2O (1:1) was added. The aqueous phase was extracted with EtOAc (3 × 30 mL). The combined organic phases were washed with sat. Na2S2O3 (30 mL), 1 M HCl (30 mL) and brine, dried (MgSO4), filtered and concentrated. The residue was purified by flash chromatography to afford 1. Compound 1a: Rf 0.19 (cyclohexane–EtOAc, 1:1); [α]D 20 +17.6 (c = 0.93, CHCl3). 1H NMR (300 MHz, C6D6): δ = 7.16 (s, 1 H), 6.02 (dd, J = 9.4, 1.5 Hz, 1 H), 3.59 (dd, J = 8.9, 6.8 Hz, 1 H), 3.10 (quint, J = 6.5 Hz, 1 H), 2.26 (ddq, J = 9.3, 9.1, 6.7 Hz, 1 H), 2.10 (d, J = 1.6 Hz, 3 H), 0.72 (d, J = 6.4 Hz, 3 H), 0.39 (d, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, C6D6): δ = 160.5, 142.2, 95.8, 82.5, 51.0, 35.1, 28.3, 16.5, 15.5. MS (CI, NH3): m/z = 313 [M+ + NH4]. Compound 1h′: Rf 0.32 (petroleum ether–EtOAc, 7:3); [α]D 20 –72.3 (c = 1.04, CHCl3). 1H NMR (300 MHz, C6D6): δ = 7.82 (s, 1 H), 5.98 (dd, J = 9.8, 1.9 Hz, 1 H), 3.67 (dd, J = 5.8, 3.7 Hz, 1 H), 2.88 (dd, J = 5.8, 3.7 Hz, 1 H), 2.24 (qd, J = 9.9, 6.8 Hz, 1 H), 2.07 (s, 3 H), 1.16–1.29 (m, 1 H), 1.01–1.14 (m, 1 H), 0.78–0.93 (m, 1 H), 0.71 (t, J = 7.2 Hz, 3 H), 0.65 (d, J = 7.5 Hz, 3 H), 0.60 (d, J = 6.7 Hz, 3 H). 13C NMR (75 MHz, C6D6): δ = 160.5, 140.9, 96.9, 81.7, 59.8, 40.0, 39.6, 28.4, 24.8, 15.4, 14.2, 11.7. MS (CI, NH3): m/z = 355 [M+ + NH4].
  • 11 Crystallographic data for compounds 1a and 1h′ have been deposited with the accession numbers CCDC 1411733 and CCDC 1411732, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/ retrieving.html.
    • 12a Jin H, Uenishi J.-L, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
    • 12b Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
    • 12c Harnying W, Kaiser A, Klein A, Berkessel A. Chem. Eur. J. 2011; 17: 4765