Synlett 2015; 26(19): 2702-2706
DOI: 10.1055/s-0035-1560265
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of Trisubstituted Vinyl Bromides by Addition of Alkynes to Oxocarbenium Ions

Andrew R. Ehle
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Melissa G. Morris
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Bryan D. Klebon
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Glenn P. A. Yap
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
,
Mary P. Watson*
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA   Email: mpwatson@udel.edu
› Author Affiliations
Further Information

Publication History

Received: 07 July 2015

Accepted after revision: 20 August 2015

Publication Date:
14 September 2015 (online)


Abstract

We have developed an efficient method for the synthesis of trisubstituted (E)-vinyl bromides by a Friedel–Crafts-type addition of alkynes to oxocarbenium ions formed in situ from acetals. The success of this reaction relies on the identification of magnesium bromide etherate as both a Lewis-acid promoter and a source of bromide. This reaction employs simple inexpensive starting materials and proceeds under mild conditions to allow the preparation of a range of vinyl bromide products in high yields and high E/Z selectivities. Furthermore, the vinyl bromides also contain an allylic ether functional group. Both the vinyl bromide and allylic ether groups are effective handles for the elaboration of these useful synthetic intermediates.

Supporting Information

 
  • References and Notes

    • 1a Xu S, Kamada H, Kim EH, Oda A, Negishi E.-i In Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 1. de Meijiere A, Brase S, Oestreich M. Chap. 3 Wiley-VCH; Weinheim: 2014: 133
    • 1b Chemla F, Ferreira F, Jackowski O, Micouin L, Perez-Luna A In Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 1. de Meijiere A, Brase S, Oestreich M. Chap. 4 Wiley-VCH; Weinheim: 2014: 279
    • 2a Creton I, Marek I, Normant JF. Synthesis 1996; 1499
    • 2b Fallis AG, Forgione P. Tetrahedron 2001; 57: 5899
    • 2c Knochel P In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I. Pergamon; Oxford: 1991: 865
    • 2d Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
    • 2e Lipshutz BH, Butler T, Lower A. J. Am. Chem. Soc. 2006; 128: 15396
    • 2f Marek I, Minko Y In Metal-Catalyzed Cross-Coupling Reactions and More . Vol. 2. de Meijiere A, Brase S, Oestreich M. Chap. 10 Wiley-VCH; Weinheim: 2014: 763
    • 2g Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
    • 2h Stüdemann T, Knochel P. Angew. Chem. Int. Ed. 1997; 36: 93
    • 2i Zhang D, Ready JM. J. Am. Chem. Soc. 2006; 128: 15050
  • 3 Tan Z, Negishi E.-i. Angew. Chem. Int. Ed. 2006; 45: 762
    • 4a Nunes C, Steffens D, Monteiro A. Synlett 2007; 103
    • 4b Kutsumura N, Niwa K, Saito T. Org. Lett. 2010; 12: 3316
    • 4c Li W, Li J, Wan Z.-K, Wu J, Massefski W. Org. Lett. 2007; 9: 4607

      For other methods, see:
    • 6a Stanforth SP In Comprehensive Functional Group Transformations II . Vol. 2. Katritzky AR, Taylor RJ. K. Elsevier; Oxford: 2005: 561
    • 6b Huang X, Fu W.-J. Synthesis 2006; 1016
    • 6c Hodgson DM, Arif T. J. Am. Chem. Soc. 2008; 130: 16500
    • 6d Imazaki Y, Shirakawa E, Ueno R, Hayashi T. J. Am. Chem. Soc. 2012; 134: 14760
    • 6e Pan J, Wang X, Zhang Y, Buchwald SL. Org. Lett. 2011; 13: 4974
    • 7a Maity P, Srinivas HD, Watson MP. J. Am. Chem. Soc. 2011; 133: 17142
    • 7b Srinivas HD, Maity P, Yap GP. A, Watson MP. J. Org. Chem. 2015; 80: 4003

      MgBr2 has been previously employed as both a Lewis acid and as a source of bromide; see:
    • 8a Wang Y, Lam HW. J. Org. Chem. 2009; 74: 1353
    • 8b Wei H.-X, Jasoni RL, Hu J, Li G, Paré PW. Tetrahedron 2004; 60: 10233

      For three-component couplings of alkynes, metal halides, and nonoxocarbenium, benzylic carbocations, see:
    • 9a Liu Z.-Q, Wang J, Han J, Zhao Y, Zhou B. Tetrahedron Lett. 2009; 50: 1240
    • 9b Marcuzzi F, Melloni G, Modena G. J. Org. Chem. 1979; 44: 3022
    • 9c Yao M.-L, Quick TR, Wu Z, Quinn MP, Kabalka GW. Org. Lett. 2009; 11: 2647
  • 10 For a three-component coupling of alkynes, metal halides, and nonbenzylic oxocarbenium ions derived from glycals, see: Tatina M, Kusunuru AK, Yousuf SK, Mukherjee D. Chem. Commun. 2013; 49: 11409

    • For examples of intramolecular Prins cyclizations of alkynes with trapping by a metal halide, see:
    • 11a Melany ML, Lock GA, Thompson DW. J. Org. Chem. 1985; 50: 3925
    • 11b Kim Y.-H, Lee K.-Y, Oh C.-Y, Yang J.-G, Ham W.-H. Tetrahedron Lett. 2002; 43: 837
    • 11c Miranda PO, Díaz DD, Padrón JI, Bermejo J, Martín VS. Org. Lett. 2003; 5: 1979
    • 11d Takami K, Yorimitsu H, Shinokubo H, Matsubara S, Oshima K. Synlett 2001; 293
    • 11e Xu T, Yu Z, Wang L. Org. Lett. 2009; 11: 2113

      For examples of divinylation of benzylic oxocarbenium ions, see:
    • 12a Kabalka GW, Wu Z, Ju Y. Org. Lett. 2002; 4: 3415
    • 12b Kabalka GW, Yao M.-L, Borella S, Wu Z, Ju Y.-H, Quick T. J. Org. Chem. 2008; 73: 2668
    • 12c Miranda PO, Díaz DD, Padrón JI, Ramírez MA, Martín VS. J. Org. Chem. 2005; 70: 57
    • 12d Shimizu M, Okura K, Arai T, Hachiya I. Chem. Lett. 2010; 39: 1052
    • 12e Shimizu M, Toyoda T, Baba T. Synlett 2005; 2516
    • 12f Yadav JS, Reddy BV. S, Eeshwaraiah B, Gupta MK, Biswas SK. Tetrahedron Lett. 2005; 46: 1161
    • 13a Price CC, Pappalardo JA. J. Am. Chem. Soc. 1950; 72: 2613
    • 13b Martens H, Janssens F, Hoornaert G. Tetrahedron 1975; 31: 177
    • 13c Kokubo K, Matsumasa K, Miura M, Nomura M. J. Org. Chem. 1996; 61: 6941
    • 13d Zhou H, Zeng C, Ren L, Liao W, Huang X. Synlett 2006; 3504
    • 13e Iwai T, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2009; 131: 6668
    • 14a Zi W, Toste FD. J. Am. Chem. Soc. 2013; 135: 12600
    • 14b Zhang M, Wang Y, Yang Y, Hu X. Adv. Synth. Catal. 2012; 354: 981
    • 14c Schultz DM, Babij NR, Wolfe JP. Adv. Synth. Catal. 2012; 354: 3451
  • 15 Reactions were conducted in 1-dram vials capped with Teflon-lined caps and heated by using aluminum heating blocks deep enough to enclose the glass of the vial completely.
  • 16 1-Bromo-4-[(2E)-3-bromo-1-methoxy-3-phenylprop-2-en-1-yl]benzene (3Ba); Typical Procedure In a N2-filled glovebox, MgBr2·OEt2 (30.9 mg, 0.12 mmol, 1.2 equiv) was weighed into a 1-dram vial equipped with a magnetic stirrer bar. Na2CO3 (13.3 mg, 0.10 mmol, 1.0 equiv), acetal 1B (23.1 mg, 0.10 mmol, 1.0 equiv), alkyne 2a (15.3 mg, 0.30 mmol, 1.5 equiv), and CHCl3 (0.5 mL) were successively added. The vial was capped with a Teflon-lined cap and heated in an aluminum heating block at 60 °C with vigorous stirring (700 rpm) for 24 h. The vial was removed from the glovebox, and the mixture was filtered through a plug of silica gel that was rinsed with Et2O to remove insoluble salts. A minimal amount of silica gel was added to the filtrate. The mixture was then concentrated and loaded directly onto a silica gel column and purified by chromatography (5% Et2O–hexanes) to give a yellow solid; yield: 34.8 mg (91%) (run 1); 34.2 mg (90%) (run 2); mp 73–82 °C. 1H NMR analysis showed that 3Ba was isolated as a 13:1 ratio of olefin isomers; FTIR (thin film): 1010, 1071, 1443, 1485, 2820, 2902, 2925 cm–1. 1H NMR (400 MHz, CDCl3): δ (major isomer) = 7.54–7.49 (m, 2 H), 7.46–7.34 (m, 5 H), 7.18 (d, J = 8.3 Hz, 2 H), 6.33 (d, J = 9.6 Hz, 1 H), 4.58 (d, J = 9.6 Hz, 1 H), 3.26 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ (major isomer) =139.1, 138.1, 133.8, 131.8, 129.1, 128.7, 128.5, 128.4, 125.0, 121.9, 80.0, 56.0. HRMS (EI+): m/z [M+] calcd for C16H14Br2: 365.9554; found: 365.9550. 1,1′-[(1E)-1-Bromo-3-methoxyprop-1-ene-1,3-diyl]dibenzene (3Aa) FTIR (thin film): 700, 768, 1088, 1099, 1444, 2819, 2889, 3029, 3060 cm–1. 1H NMR (400 MHz, CDCl3): δ (major isomer) = 7.47–7.26 (m, 10 H), 6.42 (d, J = 9.6 Hz, 1 H), 4.63 (d, J = 9.6 Hz, 1 H), 3.27 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ (major isomer) = 140.0, 138.3, 134.3, 129.0, 128.8, 128.7, 128.4, 128.1, 126.7, 124.5, 80.6, 56.0. HRMS (EI+): m/z [M+] calcd for C16H15O: 223.1119; found: 223.1123. {3-[(2E)-3-Bromo-1-methoxy-3-phenylprop-2-en-1-yl]phenoxy}(tert-butyl)dimethylsilane (3Ea) FTIR (thin film): 699, 782, 1257, 1277, 1444, 1600, 2857, 2895, 2929, 3060 cm–1. 1H NMR (400 MHz, CDCl3): δ (major isomer) = 7.39 (d, J = 3.2 Hz, 5 H), 7.21 (t, J = 7.7 Hz, 1 H), 6.86 (d, J = 7.6 Hz, 1 H), 6.77 (m, 2 H), 6.35 (d, J = 9.6 Hz, 1 H), 4.51 (d, J = 9.6 Hz, 1 H), 3.22 (s, 3 H), 0.98 (s, 9 H), 0.21 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ (major isomer) = 155.9, 141.5, 138.2, 134.3, 129.7, 129.0, 128.8, 128.3, 128.2, 124.4, 119.7, 118.4, 80.5, 56.1, 25.7, 18.2, –4.3. HRMS (EI+): m/z [M+] calcd for C15H26O3Si: 282.1651; found: 282.1655.
  • 17 Crystallographic data for compound 3Ba have been deposited with the accession numbers CCDC 973170, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 18 Antiperiplanar addition of halide and a cation across an alkyne has been proposed, particularly for reactions conducted at low temperatures; see: Yeh M.-CP, Fang C.-W, Lin H.-H. Org. Lett. 2012; 14: 1830
  • 19 Kuznetsov A, Gevorgyan V. Org. Lett. 2012; 14: 914
  • 20 Wang J, Zhang L, Jing Y, Huang W, Zhou X. Tetrahedron Lett. 2009; 50: 4978
    • 21a Karaguni I.-M, Glüsenkamp K.-H, Langerak A, Geisen C, Ullrich V, Winde G, Möröy T, Müller O. Bioorg. Med. Chem. Lett. 2002; 12: 709
    • 21b Kolanos R, Siripurapu U, Pullagurla M, Riaz M, Setola V, Roth BL, Dukat M, Glennon RA. Bioorg. Med. Chem. Lett. 2005; 15: 1987