Synlett 2016; 27(06): 956-960
DOI: 10.1055/s-0035-1561290
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Biomimetic Aerobic Oxidation of Alcohols Catalyzed by Iron Combined with Amino Acids

Guofu Zhang
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Shasha Li
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Jie Lei
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Guihua Zhang
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Xiaoqiang Xie
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Chengrong Ding*
a   College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. of China   Email: dingcr@zjut.edu.cn
,
Renhua Liu*
b   School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: liurh@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 14 October 2015

Accepted after revision: 22 November 2015

Publication Date:
28 December 2015 (online)


Abstract

A novel combination of FeCl3, l-valine and TEMPO is found to oxidize alcohols to the carbonyl compounds with dioxygen. A wide range of primary/secondary benzyl, allylic, and heterocyclic alcohols have been efficiently converted into aldehydes and ketones with good to excellent isolated yields.

Supporting Information

 
  • References and Notes

    • 1a Bäckvall E. Modern Oxidation Methods . Wiley-VCH; Weinheim: 2004
    • 1b Tojo G, Fernandez M. Oxidations of Alcohols to Aldehydes and Ketones . Springer; New York: 2006
    • 1c Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547
  • 2 Boisvert L, Goldberg KI. Acc. Chem. Res. 2012; 45: 899
    • 3a ten Brink GJ, Arends IW. C. E, Sheldon RA. Science 2000; 287: 1636
    • 3b Piera J, Persson A, Caldentey X, Bäckvall J.-E. J. Am. Chem. Soc. 2007; 129: 14120
    • 3c Zhang G.-F, Wang Y, Wen X, Ding C.-R, Li Y. Chem. Commun. 2012; 48: 2979
    • 4a Dijksman A, Marino-González A, Payeras AM, Arends IW. C. E, Sheldon RA. J. Am. Chem. Soc. 2001; 123: 6826
    • 4b Csjernyik G, Éll L, Fadini AH, Pugin B, Bäckvall J.-E. J. Org. Chem. 2002; 67: 1657
    • 4c Mori S, Takubo M, Makida K, Yanase T, Aoyagi S, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2009; 5159
    • 5a Döbler C, Mehltretter GM, Sundermeier U, Eckert M, Militzer H.-C, Beller M. Tetrahedron Lett. 2001; 42: 8447
    • 5b Muldoon J, Brown SN. Org. Lett. 2002; 4: 104
    • 6a Guan B.-T, Xing D, Cai GX, Wan X.-B, Yu N, Fang Z, Yang L.-P, Shi Z.-J. J. Am. Chem. Soc. 2005; 127: 18004
    • 6b Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 4151
    • 6c Karimi B, Esfahani FK. Adv. Synth. Catal. 2012; 354: 1319
    • 7a Fujita K, Yoshida T, Imori Y, Yamaguchi R. Org. Lett. 2011; 13: 2278
    • 7b Kawahara R, Fujita K, Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
    • 8a Semmelhack MF, Schmid CR, Cortés DA, Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
    • 8b Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 8c Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
    • 8d Allen SE, Walvoord RR, Salinas RP, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 8e Zhang G.-F, Han X.-W, Luan Y.-X, Wang Y, Wen X, Ding C.-R. Chem. Commun. 2013; 49: 7908
    • 8f Zhang G.-F, Han X.-W, Luan Y.-X, Wang Y, Wen X, Xu L, Ding C.-R, Gao J.-R. RSC Adv. 2013; 3: 19255
    • 8g Zhang G.-F, Lei J, Han X.-W, Luan Y.-X, Ding C.-R, Shan S. Synlett 2015; 26: 779
    • 8h McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756

      For some reviews, see:
    • 9a Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227
    • 9b Gligorich KM, Sigman MS. Chem. Commun. 2009; 3854
    • 9c Han S.-B, Kim IS, Krische MJ. Chem. Commun. 2009; 7278
    • 9d Parmeggiani C, Cardona F. Green Chem. 2012; 14: 547
    • 9e Sheldon RA. Catal. Today 2015; 247: 4
    • 10a Que LJr, Tolman WB. Nature (London, U.K.) 2008; 455: 333
    • 10b Xu B, Lumb J.-P, Arndtsen BA. Angew. Chem. Int. Ed. 2015; 54: 4208
    • 11a Plietker B. Iron Catalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2008
    • 11b Chen K, Que LJr. J. Am. Chem. Soc. 2001; 123: 6327
    • 11c Shan X, Que LJr. J. Inorg. Biochem. 2006; 100: 421
    • 11d Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
    • 11e Bolm C. Nat. Chem. 2009; 1: 420
    • 12a Cotton FA, Wilkinson G, Manfred B, Carlos M. Advanced Inorganic Chemistry . Wiley; New York: 1998
    • 12b Crichto R. Inorganic Biochemistry of Iron Metabolism. Wiley; Chichester: 2001
    • 12c Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 12d Correa A, Mancheno OG, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 12e Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
    • 12f Leskelae M, Repo T. Chem. Commun. 2010; 46: 9250
  • 13 Costas M, Chen K, Que LJr. Coord. Chem. Rev. 2000; 200–202: 517
    • 14a Ortiz de Montellano PR. Cytochrome P-450 Structure, Mechanism and Biochemistry . 2nd ed. Plenum Press; New York: 1995
    • 14b Stubbe J, Kozarich JW. Chem. Rev. 1987; 87: 1107
    • 14c Meunier B. Chem. Rev. 1992; 92: 1411
    • 14d Li HY, Poulos TL. Structure 1994; 2: 461
    • 14e Sono M, Roach MP, Coulter ED, Dawson JH. Chem. Rev. 1996; 96: 2841
  • 15 Wallar BJ, Lipscomb JD. Chem. Rev. 1996; 96: 2625
    • 16a Woodland MP, Dalton H. J. Biol. Chem. 1984; 259: 53
    • 16b Green J, Dalton H. J. Biol. Chem. 1989; 264: 17698
    • 16c Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P. Nature (London, U.K.) 1993; 366: 537
    • 17a Tshuva EY, Lippard SJ. Chem. Rev. 2004; 104: 987
    • 17b Monir K, Bagdi AK, Ghosh M, Hajra A. Org. Lett. 2014; 16: 4630
    • 18a Cabral J, Laszlo P, Mahe L. Tetrahedron Lett. 1989; 30: 3969
    • 18b Christoffers J, Baro A. Angew. Chem. Int. Ed. 2003; 42: 1688
    • 18c White JD, Shawa S. Chem. Sci. 2014; 5: 2200
    • 19a Oldenburg PD, Feng Y, Pryjonska-Ray I, Ness D, Que LJr. J. Am. Chem. Soc. 2010; 132: 17713
    • 19b Chen M, White MC. Science 2010; 327: 566
    • 19c Bigi MA, Reed SA, White MC. Nat. Chem. 2011; 3: 216
    • 20a Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
    • 20b Hatakeyama T, Imayoshi R, Yoshimoto Y, Ghorai SK, Jin M, Takaya H, Norisuye K, Sohrin Y, Nakamura M. J. Am. Chem. Soc. 2012; 134: 20262
    • 20c Modak A, Rana S, Maiti D. J. Org. Chem. 2015; 80: 296
    • 21a Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 21b Heuss BD, Mayer MF, Dennis S, Hossain MM. Inorg. Chim. Acta 2003; 342: 301
    • 21c Maiti S, Biswas S, Jana U. J. Org. Chem. 2010; 75: 1674
    • 22a Whetten RL, Fu K.-J, Grant ER. J. Am. Chem. Soc. 1982; 104: 4270
    • 22b Long GT, Weitz E. J. Am. Chem. Soc. 2000; 122: 1431
    • 22c Mayer M, Welther A, von Wangelin AJ. ChemCatChem 2011; 3: 1567
    • 23a Al-Hunaiti A, Niemi T, Sibaouih A, Pihko P, Leskelae M, Repo T. Chem. Commun. 2010; 46: 9250
    • 23b Join B, Möller K, Ziebart C, Schröder K, Gördes D, Thurow K, Spannenberg A, Junge K, Beller M. Adv. Synth. Catal. 2011; 353: 3023
    • 23c Wang L, Li J, Lv Y, Zhao G, Gao S. Appl. Organomet. Chem. 2012; 26: 37
    • 23d Chakraborty S, Lagaditis PO, Forster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S. ACS Catal. 2014; 4: 3994
    • 23e Song H, Kang B, Hong SH. ACS Catal. 2014; 4: 2889
    • 24a Martin SE, Suárez DF. Tetrahedron Lett. 2002; 43: 4475
    • 24b Wang N.-W, Liu R.-H, Chen J.-P, Liang X.-M. Chem. Commun. 2005; 5322
    • 24c Wang X.-L, Liang X.-M. Chin. J. Catal. 2008; 29: 935
    • 24d Yin W.-L, Chu C.-H, Lu Q.-Q, Tao J.-W, Liang X.-M, Liu R.-H. Adv. Synth. Catal. 2010; 352: 113
    • 24e Ma S.-M, Liu J.-X, Li S.-H, Chen B, Cheng J.-J, Kuang J.-Q, Liu Y, Wan B.-Q, Wang Y.-L, Ye J.-T, Yu Q, Yuan W.-M, Yu S.-C. Adv. Synth. Catal. 2011; 353: 1005
    • 24f Miao C.-X, Wang J.-Q, Yu B, Cheng W.-G, Sun J, Chanfreau S, He L.-N, Zhang S.-J. Chem. Commun. 2011; 47: 2697
    • 24g Liu J.-X, Ma S.-M. Org. Biomol. Chem. 2013; 11: 4186
    • 24h Liu J.-X, Ma S.-M. Tetrahedron 2013; 69: 10161
    • 24i Liu J.-X, Ma S.-M. Org. Lett. 2013; 15: 5150
  • 25 Typical Procedure for Primary Alcohol Oxidation (p-Methylbenzyl Alcohol) A mixture of p-methylbenzyl alcohol (0.1222 g, 1.0 mmol), l-valine (0.0117 g, 0.1 mmol), FeCl3 (0.0081 g, 0.05 mmol), TEMPO (0.0156 g, 0.1 mmol), toluene (4.0 mL), 4 Å MS (0.7000 g) were added to a 150 mL Schlenk tube. Then the resulting mixture was vigorously stirred under oxygen at reflux temperature for 12 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product 1 (0.1093 g isolated yield 91%). 1H NMR (500 MHz, CDCl3): δ = 2.38 (s, 3 H), 7.27 (d, J = 4.3 Hz, 2 H), 7.73 (d, J = 4.0 Hz, 2 H), 9.91 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 21.5, 129.4, 129.5, 134.0, 145.2, 191.6.
  • 26 Typical Procedure for Secondary Alcohol Oxidation (1-Phenethyl Alcohol) A mixture of 1-phenethyl alcohol (0.1222 g, 1.0 mmol), l-valine (0.0117 g, 0.1 mmol), FeCl3 (0.0162 g, 0.1 mmol), TEMPO (0.0156 g, 0.1 mmol), toluene (4.0 mL), 4 Å MS (0.7000 g) were added to a 150 mL Schlenk tube. Then the resulting mixture was vigorously stirred under oxygen at reflux temperature for 24 h. After the reaction, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product 26 (0.1093 g isolated yield 91%). 1H NMR (500 MHz, CDCl3): δ = 2.52 (s, 3 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.51 (t, J = 7.0 Hz, 1 H), 7.91 (d, J = 4.3 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 26.5, 128.2, 128.5, 133.0, 137.1, 198.1.