Synlett 2016; 27(09): 1413-1417
DOI: 10.1055/s-0035-1561571
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Protocol for Formylation of Amines Using Carbon Dioxide and PMHS under Transition-Metal-Free Conditions

Deepak B. Nale
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 28 November 2015

Accepted after revision: 17 January 2016

Publication Date:
18 February 2016 (online)


Abstract

A highly efficient, green and simple base catalytic system was investigated for the formylation of amines using CO2 and PMHS [poly(methylhydrosiloxane)] under mild reaction conditions. This reaction proceeds smoothly without additives and furnishes the corresponding N-formylated products from both the 1° and the 2° aliphatic as well as aromatic amines in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Aresta M. Carbon Dioxide as Chemical Feedstock . Wiley-VCH; Weinheim: 2010
    • 1b Huang K, Sun CL, Shi Z. J. Chem. Soc. Rev. 2011; 40: 2435
    • 1c Sakakura T, Choi JC, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 2a Riduan SN, Zhang YG, Ying JY. Angew. Chem. Int. Ed. 2009; 48: 3322
    • 2b Sattler W, Parkin G. J. Am. Chem. Soc. 2012; 134: 17462
    • 2c Berkefeld A, Piers WE, Parvez M. J. Am. Chem. Soc. 2010; 132: 10660
    • 2d Motokura K, Kashiwame D, Miyaji A, Baba T. Org. Lett. 2012; 14: 2642
    • 2e Matsuo T, Kawaguchi H. J. Am. Chem. Soc. 2006; 128: 12362
    • 2f Park S, Bezier D, Brookhart M. J. Am. Chem. Soc. 2012; 134: 11404
    • 2g Eisenschmid TC, Eisenberg R. Organometallics 1989; 8: 1822
    • 2h Boogaerts II. F, Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
    • 2i Khandelwal M, Wehmschulte RJ. Angew. Chem. Int. Ed. 2012; 51: 7323
    • 2j Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
    • 3a Li S, Jin H, Mumford KA, Smith K, Stevens G. J. Energy Resour. Technol. 2015; 137: 042002
    • 3b Sengupta S, Amte V, Dongara R, Das AK, Bhunia H, Bajpai PK. Energy Fuels 2014; 29: 287
    • 3c Xiao G, Singh R, Chaffee A, Webley P. Int. J. Greenhouse Gas Control 2011; 5: 634
    • 4a Marciniec B. Coord. Chem. Rev. 2005; 249: 2374
    • 4b Addis D, Das S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 6004
    • 4c Zhang L, Cheng J, Hou Z. Chem. Commun. 2013; 49: 4782
    • 4d Liu M, Liu B, Zhong S, Shi L, Liang L, Sun J. Ind. Eng. Chem. Res. 2015; 54: 633
    • 4e Liu M, Liu B, Shi L, Wang F, Liang L, Sun J. RSC Adv. 2015; 5: 960
    • 4f Liu M, Li X, Lin X, Liang L, Gao X, Sun J. J. Mol. Catal. A: Chem. 2016; 412: 20
    • 5a Jessop PG, Ikariya T, Noyori R. Chem. Rev. 1995; 95: 259
    • 5b Leitner W. Angew. Chem., Int. Ed. Engl. 1995; 34: 2207 ; Angew. Chem. 1995, 107, 2391
    • 5c Jessop PG, Joo F, Tai CC. Coord. Chem. Rev. 2004; 248: 2425
    • 5d Federsel C, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2010; 49: 6254 ; Angew. Chem. 2010, 122, 6392
    • 5e Li YN, Ma R, He LN, Diao ZF. Catal. Sci. Technol. 2014; 4: 1498
    • 5f Huff CA, Sanford M. J. Am. Chem. Soc. 2011; 133: 18122
    • 5g Wesselbaum S, Stein T, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2012; 51: 7499 ; Angew. Chem. 2012, 124, 7617
    • 5h Rezayee NM, Huff CA, Sanford MS. J. Am. Chem. Soc. 2015; 137: 1028
    • 5i Nale DB, Bhanage BM. Green Chem. 2015; 17: 2480
    • 5j Nale DB, Rana S, Parida KM, Bhanage BM. Catal. Sci. Technol. 2014; 4: 1608
    • 5k Nale DB, Rana S, Parida KM, Bhanage BM. Appl. Catal. A 2014; 469: 340
    • 5l Nale DB, Saigaonkar SD, Bhanage BM. J. CO2 Util. 2014; 8: 67
    • 5m Watile RA, Deshmukh KM, Dhake KP, Bhanage BM. Catal. Sci. Technol. 2012; 2: 1051
    • 5n Bhanage BM, Fujita S, Ikushima Y, Arai M. Green Chem. 2003; 5: 340
    • 6a Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007
    • 6b Yuan Y, Thome I, Kim SH, Chen D, Beyer A, Bonnamour J, Zuidema E, Chang S, Bolm C. Adv. Synth. Catal. 2010; 352: 2892
    • 6c Cano R, Ramon DJ, Yus M. J. Org. Chem. 2011; 76: 654
    • 6d Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495
    • 6e Zou LH, Reball J, Mottweiler J, Bolm C. Chem. Commun. 2012; 48: 11307
    • 6f Diness F, Fairlie DP. Angew. Chem. Int. Ed. 2012; 51: 8012
    • 6g Perez-Aguilar MC, Valdes C. Angew. Chem. Int. Ed. 2012; 51: 5953
    • 6h Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
    • 6i Modern Reduction Methods . Andersson EA, Munslow IJ. Wiley-VCH; Weinheim: 2008
    • 6j Hydrosilylation: A Comprehensive Review on Recent Advances. Marciniec B. Springer; New York: 2009
    • 6k Brook MA. Silicon in Organic, Organometallic and Polymer Chemistry. Wiley; New York: 2000
    • 6l Corey JY. Chem. Rev. 2011; 111: 863
  • 7 Lawrence NJ, Drew MD, Bushell SM. J. Chem. Soc., Perkin Trans. 1999; 1: 3381
  • 8 Walsh R. Acc. Chem. Res. 1981; 14: 246
    • 9a Pouessel J, Jacquet O, Cantat T. ChemCatChem 2013; 5: 3552
    • 9b Weissermel K, Arpe H.-J. Industrial Organic Chemistry . 3rd ed. Wiley-VCH; Weinheim: 1997
    • 10a Kozak M. Microbiol. Rev. 1983; 47: 1
    • 10b Wisniewski JR, Zougman A, Mann M. Nucleic Acids Res. 2008; 36: 570
    • 11a Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226 ; Angew. Chem. 2012, 124, 9360
    • 11b Muzart J. Tetrahedron 2009; 65: 8313
  • 12 Haynes P, Slaugh LH, Kohnle JF. Tetrahedron Lett. 1970; 365
    • 13a Koinuma H, Kawakami F, Kato H, Hirai H. J. Chem. Soc., Chem. Commun. 1981; 213
    • 13b Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O. Chem Sci. 2013; 4: 2152
    • 13c Jacquet O, Gomes CD, Ephritikhine M, Cantat T. ChemCatChem 2013; 5: 117
    • 13d Lalrempuia R, Iglesias M, Polo V, Miguel PJ. S, Fernandez-Alvarez FJ, Perez-Torrente JJ, Oro LA. Angew. Chem. Int. Ed. 2012; 51: 12824
    • 14a Jessop PG, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc. 1994; 116: 8851
    • 14b Jessop PG, Hsiao Y, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 344
    • 15a Formamides. Bipp H, Kieczka H. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH; Weinheim: 2000
    • 15b Ke Z, Zhang Y, Cui X, Shi F. Green Chem. 2016; 18: 808
  • 16 Kröcher O, Köppel RA, Baiker A. Chem. Commun. 1997; 453
    • 17a Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9777 ; Angew. Chem. 2010, 122, 9971
    • 17b Federsel C, Bart CZ, Jackstell R, Baumann W, Beller M. Chem. Eur. J. 2012; 18: 72
    • 17c Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
    • 18a Fujihara T, Xu TH, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
    • 18b Gomes CD, Jacquet O, Villiers C, Thuery P, Ephritikhine M, Cantat T. Angew. Chem. Int. Ed. 2012; 51: 187
    • 18c Jacquet O, Frogneux X, Gomes CD, Cantat T. Chem Sci. 2013; 4: 2127
    • 18d Jacquet O, Gomes CD, Ephritikhine M, Cantat T. J. Am. Chem. Soc. 2012; 134: 2934
    • 18e Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Catal. Sci. Technol. 2013; 3: 2392
    • 18f Chong CC, Kinjo R. Angew. Chem. 2015; 127: 1
    • 18g Nguyen TV. Q, Yoo W.-J, Kobayashi S. Angew. Chem. 2015; 127: 9341
    • 18h Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem. 2015; 17: 157
    • 19a Riduan SN, Ying JY, Zhang YG. ChemCatChem 2013; 5: 1490
    • 19b Huang F, Lu G, Zhao LL, Li HX, Wang ZX. J. Am. Chem. Soc. 2010; 132: 12388
    • 19c Wang BJ, Cao ZX. RSC Adv. 2013; 3: 14007
  • 20 General Procedure for the Synthesis of Formamide Derivatives: The catalyst (10.0 mol%) was introduced into a 100-mL autoclave equipped with an overhead stirrer and an automatic temperature control system5i containing amine (1 mmol), PMHS (4.0 mmol) and THF (5.0 mL) at r.t. After sealing and flushing the reactor three times with 10 atm of N2, followed by the CO2 to the desired pressure, the reactor was heated and stirred vigorously at 530–600 rpm for 12 h. After completion of the reaction, the reactor was cooled to r.t. and the pressure was carefully released. Basic hydrolysis of the reaction mixture was carried out as previously described.5h The reaction mixture was then extracted with EtOAc (3 × 10 mL), the combined organic layers were dried over anhyd Na2SO4, filtered and evaporated in vacuo. The isolated crude oil product was further purified by column chromatography on 100–200 mesh size silica gel (elution with 20:4 → 10:2 petroleum ether–EtOAc) to provide the corresponding pure compound. The spectroscopic data are consistent with those reported in the literature and in agreement with the assigned structures.21 Morpholine-4-carbaldehyde (2a): colorless oil; yield: 99%. 1H NMR (400 MHz, 30 °C, CDCl3, TMS): δ = 7.92 (s, 1 H), 3.58–3.52 (m, 4 H), 3.44 (t, J = 4.0 Hz, 2 H), 3.28 (t, J = 4.0 Hz, 2 H). 13C NMR (100 MHz, 30 °C, CDCl3, TMS): δ = 160.81, 67.08, 66.26, 45.67, 40.44. GC–MS (EI): m/z (%) = 115 (100) [M]+. Indoline-1-carbaldehyde (2o): brown solid; yield: 78%. 1H NMR (400 MHz, 30 °C, CDCl3, TMS): δ (mixture of rotamers) = 8.92 (s, 1 H, major), 8.50 (s, 1 H, minor), 7.24–7.14 (m, 3 H), 7.05–7.01 (m, 1 H), 4.05 (t, J = 8.0 Hz, 2 H), 3.14 (t, J = 8.0 Hz, 2 H). 13C NMR (100 MHz, 30 °C, CDCl3, TMS): δ = 157.58, 140.93, 127.57, 126.06, 125.13, 124.28, 109.38, 44.64, 27.17. GC–MS (EI): m/z (%) = 147 (65) [M]+. N-Benzyl-N-methylformamide (2q): colorless oil; yield: 95%. 1H NMR (400 MHz, CDCl3, 30 °C, TMS): δ (mixture of rotamers) = 8.26 (s, 1 H, major), 8.13 (s, 1 H, minor), 7.37–7.17 (m, 5 H), 4.50 (s, 2 H, minor), 4.37 (s, 2 H, major), 2.82 (s, 3 H, minor), 2.76 (s, 3 H, major). 13C NMR (100 MHz, 30 °C, CDCl3, TMS): δ (mixture of rotamers) = 162.74 (major), 162.57 (minor), 135.96 (minor), 135.69 (major), 128.88 (major), 128.67 (minor), 128.21 (major), 128.08 (minor), 127.62 (minor), 127.36 (major), 53.47 (major), 47.74 (minor), 34.05 (major), 29.44 (minor). GC–MS (EI): m/z (%) = 149 (100) [M]+. N-Methyl-N-phenylformamide (2s): brownish oil; yield: 93%. 1H NMR (400 MHz, 30 °C, CDCl3, TMS): δ = 8.39 (s, 1 H), 7.33 (t, J = 8.0 Hz, 2 H), 7.20 (t, J = 8.0 Hz, 1 H), 7.10 (d, J = 4.0 Hz, 2 H), 3.24 (s, 3 H). 13C NMR (100 MHz, CDCl3, 30 °C, TMS): δ (mixture of rotamers) = 162.27 (major), 162.17 (minor), 142.08, 129.55, 128.96, 126.32 (major), 126.16 (minor), 123.53, 122.26, 31.95. GC–MS (EI): m/z (%) = 135 (85) [M]+.
    • 21a Ortega N, Richter C, Glorius F. Org. Lett. 2013; 15: 1776
    • 21b Saidi O, Bamford MJ, Blacker AJ, Lynch J, Marsden SP, Plucinski P, Watson RJ, Williams JM. J. Tetrahedron Lett. 2010; 51: 5804
    • 21c Lebleua T, Kotsukib H, Maddalunoa J, Legros J. Tetrahedron Lett. 2014; 55: 362