Synlett 2016; 27(14): 2167-2170
DOI: 10.1055/s-0035-1561640
letter
© Georg Thieme Verlag Stuttgart · New York

In-Water Synthesis of Quinazolinones from 1,1-Dichloro-2-nitroethene and Anthranilamides

Fengjuan Zhu
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn
,
Runjiang Song
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn
,
Shen Li
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn
,
Xusheng Shao*
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 February 2016

Accepted after revision: 13 April 2016

Publication Date:
09 May 2016 (online)


Abstract

An efficient synthetic methodology was developed for direct formation of quinazolinones with 2-nitromethyl substituent via 1,1-dichloro-2-nitroethene and anthranilamides. This strategy provides an alternative for quinazolinones construction with merits of proceeding in water, easy purification, and no addition of catalysts.

Supporting Information

 
  • References and Notes

    • 1a Padithem M, Annapurnapadmavathi D, Prasunamba PL, Saraladevi CH. Int. J. Pharm. Pharm. Sci. 2013; 5: 179
    • 1b Kahn I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 1c Kahn I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
  • 2 Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
  • 3 Moghaddam KG, Hashemianzadeh SM. RSC Adv. 2015; 5: 76642
  • 4 Shan C, Lin J, Hou J.-Q, Liu H.-Y, Chen S.-B, Chen A.-C, Ou T.-M, Tan J.-H, Li D, Gu L.-Q, Huang Z.-S. Nucleic Acids Res. 2015; 43: 6677
  • 5 Jiang JB, Hesson DP, Dusak BA, Dexter DL, Kang GJ, Hamel E. J. Med. Chem. 1990; 33: 1721
  • 6 Xia Y, Yang Z.-Y, Hour M.-J, Kuo S.-C, Xia P, Bastow KF, Nakanishi Y, Nampoothiri P, Hackl T, Hamel E, Lee K.-H. Bioorg. Med. Chem. Lett. 2001; 11: 1193
  • 7 Kuarm BS, Reddy YT, Madhav JV, Crooks PA, Rajitha B. Bioorg. Med. Chem. Lett. 2011; 21: 524
  • 8 Xu Z, Zhang Y, Fu H, Zhong H, Hong K, Zhu W. Bioorg. Med. Chem. Lett. 2011; 21: 4005
  • 9 Kumar A, Tyagi M, Srivastava VK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2003; 42: 2142
  • 10 Delaszlo SE, Quagliato CS, Greenlee WJ, Patchett AA, Lotti VJ, Chen TB, Scheck SA, Faust A. J. Med. Chem. 1993; 36: 320
  • 11 Daidone G, Maggio B, Raffa D, Plescia S, Bajardi ML, Caruso A, Cutuli VM. C, Roxas MA. Eur. J. Med. Chem. 1994; 29: 707
  • 12 Brumas VB, Fiallo LM. M, Berthon G. J. Inorg. Biochem. 2006; 100: 362
  • 13 Archana Srivastava VK, Kumar A. Eur. J. Med. Chem. 2002; 37: 873
  • 14 Natte K, Neumann H, Wu X.-F. Catal. Sci. Technol. 2015; 5: 4474
  • 15 Chandrika PM, Rao AR. R, Narasaiah B, Raju MB. Int. J. Chem. Sci. 2008; 6: 1119
  • 16 Singh T, Sharma S, Srivastava VK, Kumar A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2006; 45: 2558
  • 17 Bajpai J, Shrivastava PK, Khare RK. J. Chemtracks 2010; 12: 369
  • 18 Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 19a Zhang XD, Ye DJ, Sun HF, Guo DL, Wang J, Huang H, Zhang X, Jiang HL, Liu H. Green Chem. 2009; 11: 1881
    • 19b Gupta S, Agarwal PK, Kundu KB. Tetrahedron Lett. 2010; 51: 1887
  • 20 Ma B, Wang Y, Peng J, Zhu Q. J. Org. Chem. 2011; 76: 6362
  • 21 Zheng Z, Alper H. Org. Lett. 2008; 10: 829
  • 22 Xu L, Jiang Y, Ma D. Org. Lett. 2012; 14: 1150
  • 23 Hikawa H, Ino Y, Suzuki H, Yokoyama Y. J. Org. Chem. 2012; 77: 7046
  • 24 Wang L.-X, Xiang J.-F, Tang Y.-L. Eur. J. Org. Chem. 2014; 2682
  • 25 Li Z, Dong J, Chen X, Li Q, Zhou Y, Yin S.-F. J. Org. Chem. 2015; 80: 9392
  • 26 Zhu F, Zou M, Shao X, Li Z. RSC Adv. 2015; 5: 61752
  • 27 Zhu F, Tian X, Shao X, Li Z. Tetrahedron Lett. 2015; 56: 5945
  • 28 Procedure for the Preparation of 2-(Nitromethyl)quinazolin-4(3H)-one (3a) 2-Aminobenzamide (136.1 mg, 1 mmol) and 1,1-dichloro-2-nitroethene (169.1 mg, 1.2 mmol) were added to 5 mL of water in a 25 mL round-bottom flask. Then stirred at 70 °C for 2.5 h, after completion, the product precipitated from the reaction mixture and can be easily separated by filtration to give the pure products; yellowish powder; yield 181 mg (88%); mp 165.9–166.4 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 10.82 (s, 1 H), 7.87 (d, J = 8.0 Hz, 1 H), 7.80–7.64 (m, 2 H), 7.43 (t, J = 7.2 Hz, 1 H), 5.67 (s, 2 H). 13C NMR (100 MHz, DMSO-d 6): δ = 160.90, 138.73, 134.06, 133.53, 126.50 , 125.28, 116.35, 106.86, 78.68. ESI-HRMS: m/z calcd for C9H6N3O3 [M – H]: 204.0409; found: 204.0406.
  • 29 Procedure for the Preparation of 2-(Nitromethyl)benzofuro[3,2-d]pyrimidin-4(3H)-one (3m) 3-Aminobenzofuran-2-carboxamide (176.1 mg, 1 mmol) and 1,1-dichloro-2-nitrothene (169.1 mg, 1.2 mmol) were added to 5 mL of water in a 25 mL round-bottom flask. Then stirred for 8 h at 10–15 °C, after completion, the mixture was purified by silica gel column chromatography (PE–EtOAc, 3:2) to give the pure product; yellowish powder; yield 98 mg (40%); mp 183.0–183.5 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.49 (s, 1 H), 7.95 (d, J = 7.6 Hz, 1 H), 7.71 (d, J = 7.6 Hz, 1 H), 7.663–7.626 (m, 1 H), 7.497–7.462 (m, 1 H), 5.78 (s, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 160.62, 153.48, 129.57, 127.44, 124.30, 121.41, 120.57, 117.49, 112.15, 111.81, 78.32. HRMS (EI): m/z calcd for C11H7N3O4 +: 245.0437; found: 245.0438.
  • 30 Procedure for the Preparation of N-[2-(3-Methyl-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl]-2-nitroacetamide (3o) 2-Amino-N-methylbenzamide (150.1 mg, 1 mmol) and 1,1-dichloro-2-nitroethene (169.1 mg, 1.2 mmol) were added to 2 mL of water in a 10 mL round-bottom flask. Then stirred for 4 h at 10 °C, after completion, the mixture was purified by silica gel column chromatography (CH2Cl2–EtOAc, 9:2) to give the pure product; yellowish powder; yield 42 mg (25%); mp 180.5–181.2 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 10.19 (s, 1 H), 8.20 (d, J = 6.8 Hz, 1 H), 7.88–7.79 (m, 2 H), 7.67 (d, J = 8.0 Hz, 1 H), 7.56–7.60 (m, 3 H), 7.39 (t, J = 7.6 Hz, 1 H), 5.42 (s, 2 H), 3.27 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 161.70, 160.67, 153.62, 147.19, 134.12, 134.06, 130.29, 129.62, 128.48, 127.19, 126.90, 126.01, 125.61, 124.13, 120.62, 78.71, 32.74. HRMS (EI): m/z calcd for C17H14N4O4 +: 338.1015; found: 338.1014.
  • 31 CCDC 1455026 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.