Synlett 2016; 27(14): 2070-2080
DOI: 10.1055/s-0035-1562469
account
© Georg Thieme Verlag Stuttgart · New York

Corannulene-Adorned Molecular Receptors for Fullerenes Utilizing the π–π Stacking of Curved-Surface Conjugated Carbon Networks. Design, Synthesis and Testing

Andrzej Sygula
Department of Chemistry, Mississippi State University, 310 President’s Circle, 39762 Mississippi State, Mississippi, USA   Email: asygula@chemistry.msstate.edu
› Author Affiliations
Further Information

Publication History

Received: 04 May 2016

Accepted after revision: 23 June 2016

Publication Date:
14 July 2016 (online)


Abstract

This brief review outlines recent developments in synthetic methodologies leading to the preparation of efficient molecular receptors for binding fullerenes via the concave–convex π–π stacking of the carbon cages with the corannulene pincers. A simple molecular modelling approach allows for a quick a priori assessment of the affinity of the receptor toward fullerenes. NMR titrations and isothermal titration calorimetry provide the association constants of the receptors with fullerenes in solution, and the X-ray crystal structures of the dimeric and trimeric inclusion complexes exhibit the leading structural motif of stacking of the curved-surface carbon networks in these supramolecular associates.

1 Introduction

2 Bis- and Tris-Corannulene Receptors for Fullerenes

2.1 The Synthetic Tools

2.2 Bis-Corannulene Receptors

2.2.1 Corannulene Twin: A Failure

2.2.2 Buckycatcher I: A Breakthrough

2.3 Other Fullerene Receptors with Corannulene Pincers

2.3.1 Polymeric Materials Containing Corannulene Fragments

2.3.2 Bis-Corannulene Clips with Flexible Tethers

2.4 Is Three Better than Two? Increasing the Number of Pincers

2.4.1 Three Corannulene Pincers on a Cyclotriveratrelene Tether

3 Beyond Buckycatcher I: Engineering the Tethers

3.1 Design

3.2 Buckycatcher II

3.3 Bis-Corannulene Receptors Based on Klärner Tethers – Reaching the Affinity Limits

4 Future Directions: Into the Aqueous Phase and on Solid Supports

5 Summary

 
  • References and Notes

  • 1 Atwood JL, Steed JW. Encyclopedia of Supramolecular Chemistry . Vol. 1–2. Marcel Dekker; New York: 2004
  • 3 Kawase T, Kurata H. Chem. Rev. 2006; 106: 5250
    • 4a Sygula A, Saebo S. Int. J. Quantum Chem. 2009; 109: 65
    • 4b Janowski T, Pulay P, Karunarathna AA. S, Sygula A, Saebo S. Chem. Phys. Lett. 2011; 512: 155
    • 4c Kennedy MR, Burns LA, Sherrill CD. J. Phys. Chem. A 2012; 116: 11920
  • 5 Yamada M, Okhubo K, Shionoya M, Fukuzumi S. J. Am. Chem. Soc. 2014; 136: 13240
    • 6a Sygula A, Rabideau PW. J. Am. Chem. Soc. 1998; 120: 12666
    • 6b Sygula A, Rabideau PW. J. Am. Chem. Soc. 1999; 121: 7800
    • 7a Seiders TJ, Baldridge KK, Elliott EL, Grube GH, Siegel JS. J. Am. Chem. Soc. 1999; 121: 7439
    • 7b Seiders TJ, Elliott EL, Grube GH, Siegel JS. J. Am. Chem. Soc. 1999; 121: 7804
    • 8a Sygula A, Rabideau PW. J. Am. Chem. Soc. 2000; 122: 6323
    • 8b Butterfield AM, Gilomen B, Siegel JS. Org. Process Res. Dev. 2012; 16: 664
  • 9 Sygula A, Karlen SD, Sygula R, Rabideau PW. Org. Lett. 2002; 4: 3135
  • 10 Sygula A, Sygula R, Rabideau PW. Org. Lett. 2006; 8: 5909
    • 11a Sygula A, Sygula R, Rabideau PW. Org. Lett. 2005; 7: 4999
    • 11b Sygula A, Sygula R, Kobryn L. Org. Lett. 2008; 10: 3927
  • 12 Sygula A, Sygula R, Ellern A, Rabideau PW. Org. Lett. 2003; 5: 2595
  • 13 Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM. J. Am. Chem. Soc. 2007; 129: 3842
  • 14 Mück-Lichtenfeld C, Grimme S, Kobryn L, Sygula A. Phys. Chem. Chem. Phys. 2010; 12: 7091
  • 15 Le VH, Yanney M, McGuire M, Sygula A, Lewis EA. J. Phys. Chem. B 2014; 118: 11956
  • 16 Risthaus T, Grimme S. J. Chem. Theory Comput. 2013; 9: 1580 ; and references therein
  • 17 Sygula A, Yanney M, Henry WP, Fronczek FR, Zabula AV, Petrukhina MA. Cryst. Growth Des. 2014; 14: 2633
  • 18 Stuparu MC. J. Polym. Sci., A: Polym. Chem. 2012; 50: 2641
  • 19 Stuparu MC. Angew. Chem. Int. Ed. 2013; 52: 7786
  • 20 Álvarez CM, Garcia-Escudero LA, Garcia-Rodriguez R, Martin-Alvarez JM, Miguel D, Rayon VM. Dalton Trans. 2014; 43: 15693
  • 21 Stuparu MC. Tetrahedron 2012; 68: 3527
  • 22 Huerta E, Helena I, Perez EM, Bo C, Martin N, de Mendoza J. J. Am. Chem. Soc. 2010; 132: 5351
  • 23 Yanney M, Sygula A. Tetrahedron Lett. 2013; 54: 2604
  • 24 Álvarez CM, Aullón G, Barbero H, García-Escudero LA, Martínez-Pérez C, Martín-Álvarez JM, Miguel D. Org. Lett. 2015; 17: 2578
  • 25 For example, see: Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K, Inoue Y, Gilson MK. J. Am. Chem. Soc. 2011; 133: 3570
  • 26 For example, see: Grimme S. Chem. Eur. J. 2012; 18: 9955 . While the reported average error for the calculated ΔG values in solutions for a set of inclusion complexes was only 2 kcal/mol, the solvation model overbound C60@9 complex in toluene by 4.5 kcal/mol and did not account properly for the experimentally observed solvent effects; see ref. 15
  • 27 See: Pérez EM, Martin N. Chem. Soc. Rev. 2015; 44: 6425
  • 28 All the gas-phase binding energies of the inclusion complexes reported here were calculated at the B97-D/QZVP’//B97-D/TZVP level.
  • 29 Yanney M, Fronczek FR, Sygula A. Angew. Chem. Int. Ed. 2015; 54: 11153
    • 30a Klärner F.-G, Kahlert B. Acc. Chem. Res. 2003; 36: 967
    • 30b Klärner F.-G, Schrader T. Acc. Chem. Res. 2013; 46: 919 ; and references therein
  • 31 Abeyratne Kuragama PL, Fronczek FR, Sygula A. Org. Lett. 2015; 17: 5292
  • 32 Kirsch M, Talbiersky P, Polkowska J, Bastkowski F, Schaller T, de Groot H, Klärner F.-G, Schrader T. Angew. Chem. Int. Ed. 2009; 48: 2886
  • 33 Prabhudesai S, Sinha S, Attar A, Kotagiri A, Fitzmaurice AG, Lakshmanan R, Ivanova MI, Loo JA, Klärner F.-G, Schrader T, Stahl M, Bitan G, Bronstein JM. Neurotherapeutics 2012; 9: 464
  • 34 Kumarasinghe KG. U. R, Fronczek FR, Valle HU, Sygula A. Org. Lett. 2016; 18: 3054
    • 35a Atwood JL, Koutsantonis GA, Raston CL. Nature 1994; 368: 229
    • 35b Suzuki T, Nakashima K, Shinkai S. Chem. Lett. 1994; 699