Synthesis 2018; 50(01): 134-138
DOI: 10.1055/s-0036-1588570
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of Rubicenes by Scholl Reaction

Masahiko Kawamura
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan   Email: stoyota@cms.titech.ac.jp
,
Eiji Tsurumaki
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan   Email: stoyota@cms.titech.ac.jp
,
Shinji Toyota*
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan   Email: stoyota@cms.titech.ac.jp
› Author Affiliations
This work was partly supported by JSPS KAKENHI for Scientific Research (C) (26410060).
Further Information

Publication History

Received: 26 July 2017

Accepted after revision: 28 August 2017

Publication Date:
25 September 2017 (online)


Abstract

The treatment of 9,10-diphenylanthracenes with DDQ in the presence of TfOH readily gave the corresponding rubicene derivatives in good yields. The effects of oxidant, acid, substituent, and other conditions are discussed. This protocol involving the Scholl reaction is convenient for the preparation of some rubicene derivatives from conventional starting materials.

Supporting Information

 
  • References

    • 1a Fitting R. Schultz A. Justus Liebigs Ann. Chem. 1878; 193: 115
    • 1b Fitting R. Ostermayer E. Justus Liebigs Ann. Chem. 1873; 166: 361
    • 1c Harvey RG. Polycyclic Aromatic Hydrocarbons . Wiley-VCH; Weinheim: 1997: 586
    • 2a Liu J. Osella S. Ma J. Berger R. Beljonne D. Schollmeyer D. Feng X. Müllen K. J. Am. Chem. Soc. 2016; 138: 8364
    • 2b Lee H. Zhang Y. Zhang L. Mirabito T. Burnett EK. Trahan S. Mohebbi AR. Mannsfeld SC. B. Wudl F. Briseno AL. J. Mater. Chem. C 2014; 2: 3361
    • 3a Scherwitzl B. Lukesch W. Hirzer A. Albering J. Leising G. Resel R. Winkler A. J. Phys. Chem. C 2013; 117: 4115
    • 3b Moral M. Perez-Jimenez AJ. Sancho-García JC. J. Phys. Chem. C 2017; 121: 3171
    • 3c Jarikov VV. J. Appl. Phys. 2006; 100: 014901
    • 3d Hitosugi S. Sato S. Matsuno T. Koretsune T. Arita R. Isobe H. Angew. Chem. Int. Ed. 2017; 56: 9106
  • 4 Sachweh V. Langhals H. Chem. Ber. 1990; 123: 1981
    • 5a Smet M. Shukla R. Fülöp L. Dehaen W. Eur. J. Org. Chem. 1998; 2769
    • 5b Clar E. Willicks W. J. Chem. Soc. 1958; 942
  • 7 Allemann O. Duttwyler S. Romanato P. Baldridge KK. Siegel JS. Science 2011; 332: 574
  • 8 For an example of other synthetic methods, see: Scheibye S. Shabana R. Lawesson S.-O. Tetrahedron 1982; 38: 993
    • 9a Scholl R. Mansfeld J. Ber. Dtsch. Chem. Ges. 1910; 43: 1734
    • 9b Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 9c Zhai L. Shukla R. Wadumethrige SH. Rathore R. J. Org. Chem. 2010; 75: 4748
    • 9d Rempala P. Kroulík J. King BT. J. Org. Chem. 2006; 71: 5067
    • 9e King BT. Kroulík J. Robertson CR. Rempala P. Hilton CL. Korinek JD. Gortari LM. J. Org. Chem. 2007; 72: 2279
    • 10a Morris JV. Mahaney MA. Huber JR. J. Phys. Chem. 1976; 80: 969
    • 10b Valeur B. Berberan-Santos MN. Molecular Fluorescence: Principles and Applications . 2nd ed. Wiley-VCH; Weinheim: 2012: Chap. 9
    • 11a Wu J. Pisula W. Müllen K. Chem. Rev. 2007; 107: 718
    • 11b Nobusue S. Fujita K. Tobe Y. Org. Lett. 2017; 19: 3227
    • 11c Bheemireddy SR. Hautzinger MP. Li T. Lee B. Plunkett KN. J. Am. Chem. Soc. 2017; 139: 5801
    • 11d Liu J. Ma J. Zhang K. Ravat P. Machata P. Avdoshenko S. Hennersdorf F. Komber H. Pisula W. Weigand JJ. Popov AA. Berger R. Müllen K. Feng X. J. Am. Chem. Soc. 2017; 139: 7513
    • 12a Chaolumen, Murata M. Sugano Y. Wakamiya A. Murata Y. Angew. Chem. Int. Ed. 2015; 54: 9308
    • 12b Chaolumen, Murata M. Wakamiya A. Murata Y. Org. Lett. 2017; 19: 826
  • 13 For a related example of Scholl reaction of diphenylpentacene derivatives, see: Lakshminarayana AN. Chang J. Luo J. Zheng B. Huang K.-W. Chi C. Chem. Commun. 2015; 51: 3604
    • 14a Zhai L. Shukla R. Rathore R. Org. Lett. 2009; 11: 3474
    • 14b Rempala P. Kroulík J. King BT. J. Am. Chem. Soc. 2004; 126: 15002
    • 14c Zhou Y. Liu W.-J. Zhang W. Cao X.-Y. Zhou Q.-F. Ma Y. Pei J. J. Org. Chem. 2006; 71: 6822
    • 15a Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 15b Chen T.-A. Liu R.-S. Org. Lett. 2011; 13: 4644
    • 15c Liu J. Narita A. Osella S. Zhang W. Schollmeyer D. Beljonne D. Feng X. Müllen K. J. Am. Chem. Soc. 2016; 138: 2602
    • 16a Hayashi N. Nakagawa H. Sugiyama Y. Yoshino J. Higuchi H. Chem. Lett. 2013; 42: 398
    • 16b Jackman LM. Adv. Org. Chem. 1960; 2: 329
    • 16c Sasaki K. Kashimura T. Ohura M. Ohsaki Y. Ohta N. J. Electrochem. Soc. 1990; 137: 2437
  • 17 Kojima K. Mizuta H. Jpn. Kokai Tokkyo Koho 2008063240, 2008
  • 18 CCDC 1564031 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 20a Sheldrick GM. Acta Crystallogr. Sect A 2008; 64: 112
    • 20b Sheldrick GM. SHELXS-2013, Program for Crystal Structure Solution . University of Göttingen; Germany: 2013
    • 20c Sheldrick GM. SHELXL-2013, Program for Crystal Structure Refinement . University of Göttingen; Germany: 2013
  • 21 Balaganesan B. Shen W.-J. Chen CH. Tetrahedron Lett. 2003; 44: 5747
  • 22 Barve KA. Raut SS. Mishra AV. Patil VR. J. Appl. Polym. Sci. 2011; 122: 3483