CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0029-0040
DOI: 10.1055/s-0036-1588859
paper
Copyright with the author

Investigations towards the Synthesis of 5-Amino-l-lyxofuranosides and 4-Amino-lyxopyranosides and NMR Analysis

,
Ramanarayanan Krishnamurthy*
This work was supported jointly by the NSF Center for Chemical Evolution, Grant CHE-1504217.
Further Information

Publication History

Received: 02 April 2017

Accepted after revision: 12 May 2017

Publication Date:
01 June 2017 (online)


Abstract

The reactivity of trifluoromethanesulfonyl esters derived from l-lyxofuranosides and l-lyxopyranosides was investigated with various 5-aminopyrimidines as nucleophiles with the expectation to synthesize N-substituted 5-amino-ribosugars. The lyxopyranoside forms were found to be unreactive, while the lyxofuranoside forms were found to be reactive with 5-aminopyrimidines, yielding novel N-substituted 5-amino-lyxofuranosides. We report on the synthesis of these novel N-substituted lyxofuranosides and the systematic analyses of NMR data that demonstrate trends within each series: furano-, pyrano-, β- and α- anomers of l-lyxose and β-d-ribopyranoside forms. The data call for caution when identifying these monosaccharides in isomeric mixtures.

Supporting Information

 
  • References

  • 1 Mittapalli GK. Ravinder KR. Xiong H. Munoz O. De Riccardis F. Krishnamurthy R. Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2470
  • 2 Mittapalli GK. Osornio YM. Guerrero MA. Ravinder KR. Krishnamurthy R. Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2478
  • 3 Zhang X. Krishnamurthy R. Angew. Chem. Int. Ed. 2009; 48: 8124
  • 4 Kini GD. Hennen WJ. J. Org. Chem. 1986; 51: 4436
  • 5 Kini GD. Petrie CR. Hennen WJ. Dalley NK. Wilson BE. Robins RK. Carbohydr. Res. 1987; 159: 81
  • 6 Varaprasad CV. Averett D. Ramasamy KS. Tetrahedron 1999; 55: 13345
  • 7 Varaprasad CV. Ramasamy KS. Hong Z. J. Heterocycl. Chem. 2006; 43: 325
  • 8 Wakharkar RD. Sahasrabuddhe MB. Borate HB. Gurjar MK. Synthesis 2004; 1830
  • 9 Keck GE. Kachensky DF. Enholm EJ. J. Org. Chem. 1985; 50: 4317
  • 10 Mohal N. Vasella A. Helv. Chim. Acta 2005; 88: 100
  • 11 Mohal N. Bernet B. Vasella A. Helv. Chim. Acta 2005; 88: 3232
  • 12 Keck GE. Wager TT. Duarte Rodriquez JF. J. Am. Chem. Soc. 1999; 121: 5176
  • 13 Reist EJ. Fisher LV. Goodman L. J. Org. Chem. 1967; 32: 2541
  • 14 Ozerov AA. Novikov MS. Brel’ AK. Solodunova GN. Chem. Heterocycl. Compd. 1998; 34: 611
  • 15 Loksha YM. Globisch D. Pedersen EB. J. Heterocycl. Chem. 2008; 45: 1161
  • 16 Boncel S. Gondela A. Mączka M. Tuszkiewicz-Kuźnik M. Grec P. Hefczyc B. Walczak K. Synthesis 2011; 603
  • 17 Gems FR. Perrotta A. Hitching GH. J. Med. Chem. 1966; 9: 108
  • 18 Sørensen MD. Khalifa NM. Pedersen EB. Synthesis 1999; 1937
  • 19 Fang W.-P. Cheng Y.-T. Cheng Y.-R. Cherng Y.-J. Tetrahedron 2005; 61: 3107
  • 20 Suchý M. Elmehriki AA. H. Hudson RH. E. Org. Lett. 2011; 13: 3952
  • 21 Coleman RS. Felpin F.-X. Chen W. J. Org. Chem. 2004; 69: 7309
  • 22 Kawana M. Kuzuhara H. Emoto S. Bull. Chem. Soc. Jpn. 1981; 54: 1492
  • 23 Brimacombe JS. Hunedy F. Tucker LC. N. J. Chem. Soc. C 1968; 1381
  • 24 Jogireddy R. Dakas P.-Y. Valot G. Barluenga S. Winssinger N. Chem. Eur. J. 2009; 15: 11498