Synthesis 2017; 49(05): 1037-1042
DOI: 10.1055/s-0036-1588907
paper
© Georg Thieme Verlag Stuttgart · New York

Blue Amino Acids Derived from Azulen-1-ylboronic Acid Pinacol Ester via the Petasis Reaction

Toshihiro Murafuji*
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: murafuji@yamaguchi-u.ac.jp
b   Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
,
Yusuke Tasaki
b   Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
,
Masayuki Fujinaga
b   Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
,
Keisuke Tao
c   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
,
Shin Kamijo
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: murafuji@yamaguchi-u.ac.jp
c   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
,
Katsuya Ishiguro
a   Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan   Email: murafuji@yamaguchi-u.ac.jp
c   Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
› Author Affiliations
Further Information

Publication History

Received: 06 September 2016

Accepted after revision: 04 October 2016

Publication Date:
22 November 2016 (online)


Abstract

Azulen-1-ylboronic acid pinacol ester undergoes a three-component Petasis reaction with amines and glyoxylic acid hydrate to give azulenylglycine derivatives in good yields. The progress of the reaction is indicated by a characteristic color change from violet to blue due to the altered π-conjugation of the azulene chromophore. The azulenylboronic ester is more reactive than its phenyl counterpart and even 2-styryl- and 2-thienylboronic pinacol esters, which have a strong electron-donating organyl group on boron. These results reflect the unique π-electron system of non-alternant azulene.

Supporting Information

 
  • References

  • 1 Mann E, Kessler H. Org. Lett. 2003; 5: 4567
    • 2a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2b Petasis NA. Multicomponent Reactions with Organoboron Compounds. In Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005: 199
    • 2c Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
    • 2d Carboni B, Berree F In Science of Synthesis . Vol. 1. Müller TJ. J. Thieme; Stuttgart: 2014: 219
  • 3 Fujinaga M, Suetake K, Gyoji K, Murafuji T, Kurotobi K, Sugihara Y. Synthesis 2008; 3745
    • 4a Meyer EA, Castellano RK, Diederich F. Angew. Chem. Int. Ed. 2003; 42: 1210
    • 4b Aravinda S, Shamala N, Das C, Sriranjini A, Karle IL, Balaram P. J. Am. Chem. Soc. 2003; 125: 5308

      For recent work, see:
    • 5a Cowper P, Jin Y, Turton MD, Kociok-Köhn G, Lewis SE. Angew. Chem. Int. Ed. 2016; 55: 2564
    • 5b Shoji T, Maruyama A, Araki T, Ito S, Okujima T. Org. Biomol. Chem. 2015; 13: 10191
    • 6a Anderson AG. Jr, Gale DJ, McDonald RN, Anderson RG, Rhodes RC. J. Org. Chem. 1964; 29: 1373
    • 6b Klemm LH, Hudson BS, Lu JJ. Org. Prep. Proced. Int. 1989; 21: 633
    • 6c Loidl G, Musiol H.-J, Budisa N, Huber R, Poirot S, Fourmy D, Moroder L. J. Pept. Sci. 2000; 6: 139
    • 6d Venanzi M, Valeri A, Palleschi A, Stella L, Moroder L, Formaggio F, Toniolo C, Pispisa B. Biopolymers 2004; 75: 128
    • 6e Moroz YS, Binder W, Nygren P, Caputo GA, Korendovych IV. Chem. Commun. 2013; 49: 490
    • 6f Shao J, Korendovych IV, Broos J. Amino Acids 2015; 47: 213
    • 7a Petasis NA, Zavialov IA. J. Am. Chem. Soc. 1997; 119: 445
    • 7b Petasis NA, Akrftopoulou I. Tetrahedron Lett. 1993; 34: 583
    • 8a Jourdan H, Gouhier G, Van Hijfte L, Angibaud P, Piettre SR. Tetrahedron Lett. 2005; 46: 8027
    • 8b Schlienger N, Bryce MR, Hansen TK. Tetrahedron 2000; 56: 10023
    • 8c Voisin AS, Bouillon A, Lancelot J.-C, Lesnard A, Oulyadi H, Rault S. Tetrahedron Lett. 2006; 47: 2165
    • 8d Candeias NR, Cal PM. S. D, André V, Duarte MT, Veiros LF, Gois PM. P. Tetrahedron 2010; 66: 2736
    • 8e Southwood TJ, Curry MC, Hutton CA. Tetrahedron 2006; 62: 236
    • 8f Cornier PG, Delpiccolo CM. L, Boggián DB, Mata EG. Tetrahedron Lett. 2013; 54: 4742
    • 8g Selander N, Kipke A, Sebelius S, Szabó KJ. J. Am. Chem. Soc. 2007; 129: 13723
    • 8h Koolmeister T, Södergren M, Scobie M. Tetrahedron Lett. 2002; 43: 5965
    • 8i Tao J, Li S. Chin. J. Chem. 2010; 28: 41
    • 8j Sridhar T, Berrée F, Sharma GV. M, Carboni B. J. Org. Chem. 2014; 79: 783
  • 9 Fujinaga M, Murafuji T, Kurotobi K, Sugihara Y. Tetrahedron 2009; 65: 7115
  • 10 Kurotobi K, Miyauchi M, Takakura K, Murafuji T, Sugihara Y. Eur. J. Org. Chem. 2003; 3663
    • 11a Ito S, Kubo T, Morita N, Matsui Y, Watanabe T, Ohta A, Fujimori K, Murafuji T, Sugihara Y, Tajiri A. Tetrahedron Lett. 2004; 45: 2891
    • 11b Recently, 2 was synthesized by the amine-mediated electrophilic borylation of azulene; see: Bagutski V, Del Grosso A, Ayuso Carrillo J, Cade IA, Helm MD, Lawson JR, Singleton PJ, Solomon SA, Marcelli T, Ingleson MJ. J. Am. Chem. Soc. 2013; 135: 474
  • 12 Mustafizur Rahman AF. M, Murafuji T, Shibasaki T, Suetake K, Kurotobi K, Sugihara Y. Organometallics 2007; 26: 2971
  • 13 For the boronate complex obtained from phenylboronic acid and copper salt in the copper-catalyzed Petasis reaction, see: Frauenlob R, García C, Bradshaw GA, Burke HM, Bergin E. J. Org. Chem. 2012; 77: 4445
  • 14 It has been reported that an intermediate tetracoordinate boronate complex is detected in the protodeboronation of an alkyl boronate complex, see: Nave S, Sonawane RP, Elford TG, Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 17096
    • 15a Shoji T, Higashi J, Ito S, Toyota K, Iwamoto T, Morita N. Eur. J. Org. Chem. 2009; 5948
    • 15b Sprutta N, Maćkowiak S, Kocik M, Szterenberg L, Lis T, Latos-Grażyński L. Angew. Chem. Int. Ed. 2009; 48: 3337
    • 15c Colby DA, Lash TD. J. Org. Chem. 2002; 67: 1031
    • 15d Asao T, Ito S, Morita N. Tetrahedron Lett. 1988; 29: 2839