Synlett 2017; 28(15): 1873-1884
DOI: 10.1055/s-0036-1589008
account
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in the Cross-Coupling Reaction Using Triorgano­silyl-Type Reagents

Takeshi Komiyama
a   Department of Applied Chemistry, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: thiyama@kc.chuo-u.ac.jp
,
Yasunori Minami*
b   Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yminami@kc.chuo-u.ac.jp
,
b   Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yminami@kc.chuo-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 25 February 2017

Accepted after revision: 27 March 2017

Publication Date:
04 May 2017 (online)


Abstract

The silicon-based cross-coupling reaction has attracted much attention over recent decades because there are many advantages in using organosilicon compounds. However, the use of reagents with a triorganosilyl group as a key function remains to be established. This account summarizes our recent progress in cross-coupling chemistry with such silyl reagents.

1 Introduction

2 Preparation of HOMSi Reagents from Aryl Bromides and Disilanes

3 HOMSi Reagents from Heteroaromatics and Hydrosilanes

4 Cross-Coupling Polymerization with HOMSi Reagents

5 Cross-Coupling with Aryl(triethyl)silanes

6 Amination of Aryl Halides with N-TMS-Amines

7 Conclusion and Perspective

 
  • References

    • 1a Diederich F. Stang PJ. In Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 1b de Meijere A. Diederich F. In Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 2004. 2nd ed.

      For recent reviews, see:
    • 2a Nakao Y. Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 2b Sore HF. Galloway WR. J. D. Spring DR. Chem. Soc. Rev. 2012; 41: 1845
    • 2c Denmark SE. Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
    • 2d Foubelo F. Najera C. Yus M. Chem. Rec. 2016; 16: 2521
    • 2e Komiyama T. Minami Y. Hiyama T. ACS Catal. 2017; 7: 631
  • 3 Hatanaka Y. Hiyama T. J. Org. Chem. 1988; 53: 918
    • 4a Denmark SE. Choi Y. J. Am. Chem. Soc. 1999; 121: 5821
    • 4b Denmark SE. Wehrli D. Choi Y. Org. Lett. 2000; 2: 2491
    • 5a Itami K. Nokami T. Ishimura Y. Mitsudo K. Kamei T. Yoshida J. J. Am. Chem. Soc. 2001; 123: 11577
    • 5b Itami K. Kamei T. Yoshida J. J. Am. Chem. Soc. 2003; 125: 14670
  • 6 Hosoi K. Nozaki K. Hiyama T. Chem. Lett. 2002; 31: 138
  • 7 Trost BM. Machacek MR. Ball ZT. Org. Lett. 2003; 5: 1895
  • 8 Hanamoto T. Kobayashi T. J. Org. Chem. 2003; 68: 6354
  • 9 Anderson JC. Munday RH. J. Org. Chem. 2004; 69: 8971
  • 10 Katayama H. Nagao M. Moriguchi R. Ozawa F. J. Organomet. Chem. 2003; 676: 49
  • 11 Li L. Navasero N. Org. Lett. 2006; 8: 3733
  • 12 Sore HF. Blackwell DT. MacDonald SJ. F. Spring DR. Org. Lett. 2010; 12: 2806
  • 13 Shindo M. Matsumoto K. Shishido K. Synlett 2005; 176
    • 14a Nakao Y. Imanaka H. Sahoo AK. Yada A. Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
    • 14b Nakao Y. Sahoo AK. Yada A. Chen J. Hiyama T. Sci. Technol. Adv. Mater. 2006; 7: 536
    • 14c Nakao Y. Imanaka H. Chen J. Yada A. Hiyama T. J. Organomet. Chem. 2007; 692: 585
    • 14d Nakao Y. Ebata S. Chen J. Imanaka H. Hiyama T. Chem. Lett. 2007; 36: 606
    • 14e Nakao Y. Chen J. Tanada M. Hiyama T. J. Am. Chem. Soc. 2007; 129: 11694
    • 14f Chen J. Tanaka M. Sahoo AK. Takeda M. Yada A. Nakao Y. Hiyama T. Bull. Chem. Soc. Jpn. 2010; 83: 554
    • 14g Nakao Y. Takeda M. Matsumoto T. Hiyama T. Angew. Chem. Int. Ed. 2010; 49: 4447
    • 15a Nakao Y. Oda T. Sahoo AK. Hiyama T. J. Organomet. Chem. 2003; 687: 570
    • 15b Sahoo AK. Nakao Y. Hiyama T. Chem. Lett. 2004; 33: 632
    • 15c Hiyama T. Sahoo AK. Oda T. Nakao Y. Adv. Synth. Catal. 2004; 346: 1715
  • 16 Nokami T. Tomida Y. Kamei T. Itami K. Yoshida J. Org. Lett. 2006; 8: 729
    • 17a Tang S. Takeda M. Nakao Y. Hiyama T. Chem. Commun. 2011; 47: 307
    • 17b Ohgi A. Semba K. Hiyama T. Nakao Y. Chem. Lett. 2016; 45: 973
    • 18a Pierrat P. Gros P. Fort Y. Org. Lett. 2005; 7: 697
    • 18b Napier S. Marcuccio SM. Tye H. Whittaker M. Tetrahedron Lett. 2008; 49: 6314
  • 19 Matsuda S. Takahashi M. Monguchi D. Mori A. Synlett 2009; 1941
  • 20 Akai S. Ikawa T. Takayanagi S. Morikawa Y. Mohri S. Tsubakiyama M. Egi M. Wada Y. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 7673
  • 21 Murata M. Ohara H. Oiwa R. Watanabe S. Matsuda Y. Synthesis 2006; 1771
  • 22 Chernyak N. Dudnik AS. Huang C. Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
  • 23 Murai M. Takami K. Takeshima H. Takai K. Org. Lett. 2015; 17: 1798
  • 24 Son EC. Tsuji H. Saeki T. Tamao K. Bull. Chem. Soc. Jpn. 2006; 79: 492
    • 25a Smith AB. III. Hoye AT. Martinez-Solorio D. Kim Q.-S. Tong R. J. Am. Chem. Soc. 2012; 134: 4533
    • 25b Martinez-Solorio D. Hoye AT. Nguyen MH. Smith III AB. Org. Lett. 2013; 15: 2454
    • 25c Nguyen MH. Smith III AB. Org. Lett. 2013; 15: 4258
    • 25d Nguyen MH. Smith III AB. Org. Lett. 2013; 15: 4872
    • 25e Nguyen MH. Smith III AB. Org. Lett. 2014; 16: 2070
    • 25f Martinez-Solorio D. Melillo B. Sanchez L. Liang Y. Lam E. Houk KN. Smith III AB. J. Am. Chem. Soc. 2016; 138: 1836

      For recent examples, see:
    • 26a Iranpoor N. Firouzabadi H. Azadi R. J. Organomet. Chem. 2010; 695: 887
    • 26b Lesbani A. Kondo H. Sato J. Yamanoi Y. Nishihara H. Chem. Commun. 2010; 46: 7784
    • 26c Lesbani A. Kondo H. Yabusaki Y. Nakai M. Yamanoi Y. Nishihara H. Chem. Eur. J. 2010; 16: 13519
    • 26d Huang C. Chernyak N. Dudnik AS. Gevorgyan V. Adv. Synth. Catal. 2011; 353: 1285
    • 26e Kurihara Y. Nishikawa M. Yamanoi Y. Nishihara H. Chem. Commun. 2012; 48: 11564
    • 26f Inubushi H. Kondo H. Lesbani A. Miyachi M. Yamanoi Y. Nishihara H. Chem. Commun. 2013; 49: 134

      For recent examples, see:
    • 27a Gooßen LJ. Ferwanah A.-RS. Synlett 2000; 1801
    • 27b Shirakawa E. Kurahashi T. Yoshida H. Hiyama T. Chem. Commun. 2000; 1895
    • 27c Denmark SE. Kallemeyn JM. Org. Lett. 2003; 5: 3483
    • 27d Iwasawa T. Komano T. Tajima A. Tokunaga M. Obora Y. Fujihara T. Tsuji Y. Organometallics 2006; 25: 4665
    • 27e Kashiwabara T. Tanaka M. Organometallics 2006; 25: 4648
    • 27f McNeill E. Barder TE. Buchwald SL. Org. Lett. 2007; 9: 3785
    • 27g Yamamoto Y. Matsubara H. Murakami K. Yorimitsu H. Osuka A. Chem. Asian J. 2015; 10: 219
    • 28a Zarate C. Martin R. J. Am. Chem. Soc. 2014; 136: 2236
    • 28b Guo L. Chatupheeraphat A. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
  • 29 Iizuka M. Kondo Y. Eur. J. Org. Chem. 2008; 1161
  • 30 Minami Y. Shimizu K. Tsuruoka C. Komiyama T. Hiyama T. Chem. Lett. 2014; 43: 201
  • 31 Shimizu K. Minami Y. Nakao Y. Ohya K. Ikehira H. Hiyama T. Chem. Lett. 2013; 42: 45

    • For recent reviews, see:
    • 32a Cheng C. Hartwig JF. Chem. Rev. 2015; 115: 8946
    • 32b Bähr S. Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 52

      For selected examples of intermolecular catalytic dehydrogenative silylation of arenes without any directing group, see:
    • 33a Tsukada N. Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
    • 33b Murata M. Fukuyama N. Wada J. Watanabe S. Masuda Y. Chem. Lett. 2007; 36: 910
    • 33c Lu B. Falck JR. Angew. Chem. Int. Ed. 2008; 47: 7508
    • 33d Ishiyama T. Saiki T. Kishida E. Sasaki I. Ito H. Miyaura N. Org. Biomol. Chem. 2013; 11: 8162
    • 33e Klare HF. T. Oestreich M. Ito J.-i. Nishiyama H. Ohki Y. Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
    • 33f Cheng C. Hartwig JF. Science 2014; 343: 853
    • 33g Cheng C. Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
    • 33h Murai M. Takami K. Takeshima H. Takai K. Org. Lett. 2015; 17: 1798
    • 33i Murai M. Takami K. Takai K. Chem. Eur. J. 2015; 21: 4566
    • 33j Yin Q. Klare HF. T. Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 3204
    • 33k Lee K.-S. Katsoulis D. Choi J. ACS Catal. 2016; 6: 1493
    • 33l Fang H. Guo L. Zhang Y. Yao W. Huang Z. Org. Lett. 2016; 18: 5624
  • 34 Toutov AA. Liu W.-B. Betz KN. Fedorov A. Stoltz BM. Grubbs RH. Nature 2015; 518: 80
  • 35 Ma Y. Wang B. Zhang L. Hou Z. J. Am. Chem. Soc. 2016; 138: 3663
  • 36 Chen Q.-A. Klare HF. T. Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
  • 37 Minami Y. Komiyama T. Hiyama T. Chem. Lett. 2015; 44: 1065

    • For recent reviews on the cross-coupling polymerization, see:
    • 38a Sakamoto J. Rehahn M. Wegner G. Schlüter AD. Macromol. Rapid Commun. 2009; 30: 653
    • 38b Robb MJ. Ku S.-Y. Hawker CJ. Adv. Mater. 2013; 25: 5686
    • 38c Carsten B. He F. Son HJ. Xu T. Yu L. Chem. Rev. 2011; 111: 1493
    • 38d Bryan ZJ. McNeil AJ. Macromolecules 2013; 46: 8395
    • 38e Yokozawa T. Nanashima Y. Ohta Y. ACS Macro Lett. 2012; 1: 862
    • 39a Sengupta S. Sadbukhan SK. J. Chem. Soc., Perkin Trans. 1 1999; 2235
    • 39b Nishihara Y. Ando J.-i. Kato T. Mori A. Hiyama T. Macromolecules 2000; 33: 2779
    • 39c Mori A. Kondo T. Kato T. Nishihara Y. Chem. Lett. 2001; 30: 286
    • 39d Babudri F. Colangiuli D. Lorenzo PA. D. Farinola GM. Omarb OH. Naso F. Chem. Commun. 2003; 39: 130
    • 39e Katayama H. Nagao M. Moriguchi R. Ozawa F. J. Organomet. Chem. 2003; 676: 49
    • 40a Kim Y. Cook S. Choulis SA. Nelson J. Durrant JR. Bradley DD. C. Chem. Mater. 2004; 16: 4812
    • 40b Kabra D. Lu LP. Song MH. Snaith HJ. Friend RH. Adv. Mater. 2010; 22: 3194
    • 40c Gwinner MC. Kabra D. Roberts M. Brenner TJ. K. Wallikewitz BH. McNeill CR. Friend RH. Sirringhaus H. Adv. Mater. 2012; 24: 2728
  • 41 Wang N. Chen Z. Wei W. Jiang Z. J. Am. Chem. Soc. 2013; 135: 17060
  • 42 Komiyama T. Minami Y. Hiyama T. Angew. Chem. Int. Ed. 2016; 55: 15787
    • 43a Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 43b Dick GR. Knapp DM. Gillis EP. Burke MD. Org. Lett. 2010; 12: 2314
    • 43c Dick GR. Woerly EM. Burke MD. Angew. Chem. Int. Ed. 2012; 51: 2667
  • 44 Hatanaka Y. Goda K.-i. Okahara Y. Hiyama T. Tetrahedron 1994; 50: 8301

    • For reactions via single-electron transfer from silicates, see:
    • 45a Yoshida Y. Tamao K. Kakui T. Kurita A. Murata M. Yamada K. Kumada K. Organometallics 1982; 1: 369
    • 45b Corc V. Chamoreau L. Derat E. Goddard J.-P. Ollivier C. Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
    • 45c Jouffroy M. Primer DN. Molander GA. J. Am. Chem. Soc. 2016; 138: 475
    • 45d Patel NR. Kelly CB. Jouffroy M. Molander GA. Org. Lett. 2016; 18: 764
    • 45e Xu P. Wang F. Fan G. Xu X. Tang P. Angew. Chem. Int. Ed. 2017; 56: 1101
  • 46 F.-Rodríguez MA. Shen Q. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 47a Milton EJ. Fuentes JA. Clarke ML. Org. Biomol. Chem. 2009; 7: 2645
    • 47b Bhadra S. Dzik WI. Gooßen LJ. J. Am. Chem. Soc. 2012; 134: 9938
    • 48a Barluenga J. Aznar F. Valadés C. Angew. Chem. Int. Ed. 2004; 43: 343
    • 48b Smith CJ. Early TR. Holmes AB. Shute RE. Chem. Commun. 2004; 1976
    • 48c Smith CJ. Tsang MW. S. Holmes AB. Danheiser RL. Tester JW. Org. Biomol. Chem. 2005; 3: 3767
    • 50a Shimizu K. Minami Y. Goto O. Ikehira H. Hiyama T. Chem. Lett. 2014; 43: 438
    • 50b Minami Y. Komiyama T. Shimizu K. Hiyama T. Goto O. Ikehira H. Bull. Chem. Soc. Jpn. 2015; 88: 1437

      For selected examples, see:
    • 51a Adhikari RM. Neckers DC. J. Org. Chem. 2009; 74: 3341
    • 51b Jiang W. Duan L. Qiao J. Dong G. Zhang D. Wang L. Qiu Y. J. Mater. Chem. 2011; 21: 4918
    • 51c Uoyama H. Goushi K. Shizu K. Nomura H. Adachi C. Nature 2012; 492: 234
    • 51d Chen Q. Luo M. Hammaeshøj P. Zhou D. Han Y. Laursen BW. Yan C.-G. Han B.-H. J. Am. Chem. Soc. 2012; 134: 6084
    • 51e Komino T. Tanaka H. Adachi C. Chem. Mater. 2014; 26: 3665
    • 51f Ishimatsu R. Matsunami S. Kasahara T. Mizuno J. Edura T. Adachi C. Nakano K. Imato T. Angew. Chem. Int. Ed. 2014; 53: 6993
  • 52 Hooper MW. Utsunomiya M. Hartwig JF. J. Org. Chem. 2003; 68: 2861

    • For pioneering work on the Pd-catalyzed C–N cross-coupling polymerization, see:
    • 53a Kanbara T. Honma A. 1996; 1135
    • 53b Goodson FE. Hauck SI. Hartwig JF. J. Am. Chem. Soc. 1999; 121: 7527
    • 54a Chen S.-A. Chuang K.-R. Chao C.-I. Lee H.-T. Synth. Met. 1996; 82: 207
    • 54b Tu G. Zhou Q. Chen Y. Wang L. Ma D. Jing X. Wang F. Appl. Phys. Lett. 2004; 85: 2172
    • 54c Lee SK. Hwang D.-H. Jung B.-J. Cho NS. Lee J. Lee J.-D. Shim H.-K. Adv. Funct. Mater. 2005; 15: 1647
    • 54d Liu J. Zhou Q. Cheng Y. Geng Y. Wang L. Ma D. Jing X. Wang F. Adv. Mater. 2005; 17: 2974
  • 55 Minami Y. Komiyama T. Shimizu K. Uno S. Hiyama T. Goto O. Ikehira H. Synlett 2017; DOI: 10.1055/s-0036-1588417.