Synlett 2017; 28(16): 2153-2156
DOI: 10.1055/s-0036-1589038
letter
© Georg Thieme Verlag Stuttgart · New York

Room-Temperature, Water-Promoted, Radical-Coupling Reactions of Phenols with tert-Butyl Nitrite

Wen-Ting Wei*
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Wen-Ming Zhu
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Weida Liang
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Yi Wu
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Hui-Yan Huang
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Yi-Ling Huang
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Junfei Luo
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
,
Hongze Liang*
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
research funds of NBU�, Grant / Award Number: 'No. ZX2016000706'
Further Information

Publication History

Received: 09 April 2017

Accepted after revision: 04 May 2017

Publication Date:
21 June 2017 (online)


Abstract

A radical–radical cross-coupling reaction of phenols with tert-butyl nitrite has been developed with the use of water as an additive. This method allows the construction of C–N bonds under an air atmosphere at room temperature, providing the ortho-nitrated phenol derivative in moderate to good yields.

Supporting Information

 
  • References

    • 2a Mechanism and Synthesis . Taylor P. Royal Society of Chemistry; Cambridge: 2002
    • 2b Huang H.-Y. Cheng L. Liu J.-J. Wang D. Liu L. Li C.-J. J. Org. Chem. 2017; 82: 2656
    • 2c Huang Z. Zhang D. Qi X. Yan Z. Wang M. Yan H. Lei A. Org. Lett. 2016; 18: 2351
    • 2d Ding W. Lu L.-Q. Liu J. Liu D. Song H.-T. Xiao W.-J. J. Org. Chem. 2016; 81: 7237
    • 2e Liu D. Li Y. Qi X. Liu C. Lan Y. Lei A. Org. Lett. 2015; 17: 998
    • 2f Jeffrey JL. Petronijević FR. MacMillan DW. J. Am. Chem. Soc. 2015; 137: 8404
    • 2g Zhou L. Tang S. Qi X. Lin C. Liu K. Liu C. Lan Y. Lei A. Org. Lett. 2014; 16: 3404
  • 3 Tyman JH. P. Synthetic and Natural Phenols . Elsevier; Amsterdam: 1996
  • 4 Louillat-Habermeyer M.-L. Jin R. Patureau FW. Angew. Chem. Int. Ed. 2015; 54: 4102
  • 5 Zhao Y. Huang B. Yang C. Xia W. Org. Lett. 2016; 18: 3326
  • 6 Jia L. Gao S. Xie J. Luo M. Adv. Synth. Catal. 2016; 358: 3840
    • 7a Zhao Y. Huang B. Yang C. Li B. Gou B. Xia W. ACS Catal. 2017; 7: 2446
    • 7b Jin R. Patureau FW. Org. Lett. 2016; 18: 4491
    • 7c Koley D. Colόn OC. Savinov SN. Org. Lett. 2009; 11: 4172
    • 7d Brandes S. Bella M. Kjærsgaard A. Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
    • 8a Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001
    • 8b Peng Q. Zhang Y. Shi F. Deng Y. Chem. Commun. (Cambridge) 2011; 47: 6476
    • 8c Prakash GK. S. Mathew T. Angew. Chem. Int. Ed. 2010; 49: 1726
    • 8d Bui T. Syed S. Barbas CF. III. J. Am. Chem. Soc. 2009; 131: 8758
    • 8e Belciug M.-P. Ananthanarayanan VS. J. Med. Chem. 1994; 37: 4392
    • 8f Burland DM. Miller RD. Walsh CA. Chem. Rev. 1994; 94: 31
  • 9 Nitration of Phenols 1; General Procedure To a Schlenk tube were added phenol 1 (0.3 mmol), tert-BuONO (2a; 0.6 mmol), H2O (0.6 mmol), and THF (2 mL), and the mixture was stirred at 25 °C under air atmosphere for the indicated time until the starting material was completely consumed (TLC). The mixture was extracted with EtOAc (3 × 10 mL), and the organic extracts were dried (Na2SO4) and concentrated under vacuum to give a crude product that was purified by column chromatography (silica gel, hexane/EtOAc, 5/1). 1-Nitro-2-naphthol (3aa) Yellow solid; yield: 0.0427 g (75%); mp 102.7–103.4 °C. 1H NMR (300 MHz, CDCl3): δ = 12.19 (s, 1 H), 8.88 (d, J = 8.7 Hz, 1 H), 7.97 (d, J = 9.0 Hz, 1 H), 7.78 (d, J = 7.8 Hz, 1 H), 7.70 (t, J = 7.8 Hz, 1 H), 7.48 (t, J = 7.5 Hz, 1 H), 7.21 (d, J = 9.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 158.9, 139.3, 131.0, 129.4, 128.7, 126.9, 125.7, 123.2, 119.4, 119.3. LRMS (EI, 70 eV): m/z (%): 189 (M+, 100), 115 (77), 89 (39).
  • 10 Liu Y. Zhang J.-L. Song R.-J. Qian P.-C. Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 9017
  • 11 Yang X.-H. Ouyang X.-H. Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
  • 12 Yang X.-H. Song R.-J. Li J.-H. Adv. Synth. Catal. 2015; 357: 3849