Synthesis 2017; 49(17): 3985-3997
DOI: 10.1055/s-0036-1589045
paper
© Georg Thieme Verlag Stuttgart · New York

Base-Mediated Ring Opening of meso-Epoxides with 4-Aryl-NH-1,2,3-triazoles: Synthesis of trans-2-(Aryltriazolyl)cycloalkanols

Ujjawal Kumar Bhagat
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
,
Kamaluddin,
Rama Krishna Peddinti*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India   Email: rkpedfcy@iitr.ac.in   Email: ramakpeddinti@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 30 April 2017

Accepted after revision: 03 May 2017

Publication Date:
19 July 2017 (online)


Abstract

A novel method of nucleophilic ring-opening of meso-epoxides with 4-aryl-NH-1,2,3-triazoles has been developed under metal-free conditions. The epoxide-ring opening process were carried out in the presence of organic bases (DABCO/Et3N) in acetonitrile at 85 °C to afford a regioisomeric mixture of trans-2-(4-aryl-2H-1,2,3-triazol-2-yl)cycloalkanols (2,4-disubstituted triazoles) as major adducts and trans-2-(4-aryl-1H-1,2,3-triazol-1-yl)cycloalkanols (1,4-disubstituted triazoles) as minor adducts in excellent combined chemical yields (isolated yield up to 99%).

Supporting Information

 
  • References

    • 1a Wolfe JP. Wagaw S. Marcoux J.-F. Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 1b Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 2a Gulevich AV. Dudnik AS. Chernyak N. Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 2b Corma A. Leyva-Perez A. Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 3a Muci AR. Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 3b Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 3c Zimmermann V. Bräse S. J. Comb. Chem. 2007; 9: 1114
    • 3d Sunesson Y. Lime E. Lill SO. N. Meadows RE. Norrby P.-O. J. Org. Chem. 2014; 79: 11961
    • 3e Sharghi H. Shiri P. Synthesis 2015; 47: 1131
  • 4 Nguyen TB. Corbin M. Retailleau P. Ermolenko L. Al-Mourabit A. Org. Lett. 2015; 17: 4956
    • 5a Perdicchia D. Jørgensen KA. J. Org. Chem. 2007; 72: 3565
    • 5b Yang Y. Shu W-M. Yu S.-B. Ni F. Gao M. Wu A.-X. Chem. Commun. 2013; 49: 1729
    • 5c Gmach J. Joachimiak Ł. Błażewska KM. Synthesis 2016; 48: 2681
    • 5d Ying A. Li Z. Yang J. Liu S. Xu S. Yan H. Wu C. J. Org. Chem. 2014; 79: 6510
    • 5e Kim S. Kang S. Kim G. Lee Y. J. Org. Chem. 2016; 81: 4048
    • 6a Azizi N. Saidi MR. Org. Lett. 2005; 16: 3649
    • 6b Pujala B. Rana S. Chakraborti AK. J. Org. Chem. 2011; 76: 8768
    • 6c Ma X. Pan S. Wang H. Chen W. Org. Lett. 2014; 16: 4554
    • 6d Wang C. Yamamoto H. J. Am. Chem. Soc. 2015; 137: 4308
    • 6e Chakraborti AK. Kondaskar A. Rudrawar S. Tetrahedron 2004; 60: 9085
    • 7a Agalave SG. Maujan SR. Pore VS. Chem. Asian J. 2011; 6: 2696
    • 7b Kuhn H. Gutelius D. Black E. Nadolny C. Basu A. Reid C. Med. Chem. Commun. 2014; 5: 1213
    • 7c Shaikh MH. Subhedar DD. Nawale L. Sarkar D. Khan FA. K. Sangshettic JN. Shingate BB. Med. Chem. Commun. 2015; 6: 1104
    • 7d Xu S. Zhuang X. Pan X. Zhang Z. Duan L. Liu Y. Zhang L. Ren X. Ding K. J. Med. Chem. 2013; 56: 4631
    • 7e Dai Z.-C. Chen Y.-F. Zhang M. Li S.-K. Yang T-T. Shen L. Wang J.-X. Qian S.-S. Zhue H.-L. Ye Y.-H. Org. Biomol. Chem. 2015; 13: 477
    • 7f Bakunov SA. Bakunova SM. Wenzler T. Ghebru M. Werbovetz KA. Brunand R. Tidwell RR. J. Med. Chem. 2010; 53: 254
    • 7g Taddei M. Ferrini S. Giannotti L. Corsi M. Manetti F. Giannini G. Vesci L. Milazzo FM. Alloatti D. Guglielmi MB. Castorina M. Cervoni ML. Barbarino M. Fodera R. Carollo V. Pisano C. Armaroli S. Cabri W. J. Med. Chem. 2014; 57: 2258
    • 7h Praveena KS. S. Murthy NY. S. Pal S. J. Chem. Pharm. Res. 2015; 7: 506
    • 8a Juricek M. Kouwer PH. J. Rowan AE. Chem. Commun. 2011; 47: 8740
    • 8b Fawcett AS. Hughes TC. Zepeda-velazquez L. Brook MA. Macromolecules 2015; 48: 6499
    • 8c Jiang Y. Golder MR. Nguyen HV.-T. Wang Y. Zhong M. Barnes JC. Ehrlich DJ. C. Johnson JA. J. Am. Chem. Soc. 2016; 138: 9369
    • 9a Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
    • 9b Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry . Padwa A. Wiley; New York: 1984: 1-176

      For reviews on the CuAAC and its applications, see:
    • 10a Kolb HC. Sharpless KB. Drug Discov. Today 2003; 8: 1128
    • 10b Bock VD. Hiemstra H. Maarseveen JH. V. Eur. J. Org. Chem. 2006; 51
    • 10c Binder WH. Sachsenhofer R. Macromol. Rapid Commun. 2007; 28: 15
    • 10d Gramlich PM. E. Wirges CT. Manetto A. Carell T. Angew. Chem. Int. Ed. 2008; 47: 8350
    • 10e Hein JE. Fokin VV. Chem. Soc. Rev. 2010; 39: 1302

      For seminal papers and representative examples of copper(I)-catalyzed azide-alkyne cycloaddition, see:
    • 11a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 11b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 11c Himo F. Lovell T. Hilgraf R. Rostovtsev VV. Noodleman L. Sharpless KB. Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 12a Tornøe CW. Christensen C. Meldal M. J. Org. Chem. 2002; 67: 3057
    • 12b Meldal M. Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 13a Zhang L. Chen X. Xue P. Sun HH. Y. Williams ID. Sharpless KB. Fokin VV. Jia G. J. Am. Chem. Soc. 2005; 127: 15998
    • 13b Hein JE. Tripp JC. Krasnova LB. Sharpless KB. Fokin VV. Angew. Chem. Int. Ed. 2009; 48: 8018
    • 13c Boren BC. Narayan S. Rasmussen LK. Zhang L. Zhao H. Lin Z. Jia G. Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
    • 14a Ramasastry SS. V. Angew. Chem. Int. Ed. 2014; 53: 14310
    • 14b Ramachary DB. Shashank AB. Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420
  • 15 Chow H.-F. Lau K.-N. Ke Z. Liang Y. Lo C.-M. Chem. Commun. 2010; 46: 3437
  • 16 Alonso F. Moglie Y. Radivoy G. Yus M. J. Org. Chem. 2011; 76: 8394
    • 17a Yadav JS. Reddy BV. S. Reddy GM. Chary DN. Tetrahedron Lett. 2007; 48: 8773
    • 17b Sharghi H. Beyzavi MH. Safavi A. Doroodmand MM. Khalifeh R. Adv. Synth. Catal. 2009; 351: 2391
    • 17c Prasad AN. Thirupathi B. Raju G. Srinivas R. Reddy BM. Catal. Sci. Technol. 2012; 2: 1264
    • 17d Kumaraswamy G. Ankamma K. Pitchaiah A. J. Org. Chem. 2007; 72: 9822
    • 18a Ackermann L. Jeyachandran R. Potukuchi HK. Novak P. Buttner L. Org. Lett. 2010; 12: 2056
    • 18b Jiang HF. Feng ZN. Wang AZ. Liu XH. Chen ZW. Eur. J. Org. Chem. 2010; 1227
    • 18c Ackermann L. Vicente R. Born R. Adv. Synth. Catal. 2008; 350: 741
  • 19 Yan W. Liao T. Tuguldur O. Zhong C. Petersen JL. Shi X. Chem. Asian J. 2011; 6: 2720
  • 20 Creary X. Anderson A. Brophy C. Crowell F. Funk Z. J. Org. Chem. 2012; 77: 8756
  • 21 Bhagat UK. Kamaluddin; Peddinti RK. Tetrahedron Lett. 2017; 58: 298
  • 22 CCDC No. 1498886 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 23 Jiang J. Wang Q. Sun R. Tanga X.-Y. Shi M. Org. Chem. Front. 2016; 3: 744
  • 24 Quan X.-J. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2014; 16: 5728