Synlett 2017; 28(16): 2139-2142
DOI: 10.1055/s-0036-1589061
letter
© Georg Thieme Verlag Stuttgart · New York

Potassium tert-Butoxide Mediated Arylation of 2-Substituted Malononitriles Using Diaryliodonium Salts

Jianwei Han*
a  Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: [email protected]   Email: [email protected]
b  Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200237, P. R. of China
,
Xiaofei Qian
a  Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: [email protected]   Email: [email protected]
,
Bowen Xu
a  Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: [email protected]   Email: [email protected]
,
Limin Wang*
a  Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
The work was supported by the National Nature Science Foundation of China (NSFC 21472213, 21272069), National Key Program (2016YFA0200302, Study on application and preparation of aroma nanocomposites), and the Fundamental Research Funds for the Central Universities.
Further Information

Publication History

Received: 24 April 2017

Accepted after revision: 22 May 2017

Publication Date:
06 July 2017 (online)


Abstract

Direct arylation of 2-substituted malononitriles using diaryliodonium salts without involving transition-metal catalysts was developed. By using potassium tert-butoxide as a promoter, the desired 2-substituated α-arylmalononitriles derivatives were synthesized in good to excellent yields of 55–96%. This synthetic method provided an efficient way to prepare a variety of 2-substituted arylmalononitriles which were useful in agrochemicals.

Supporting Information

 
  • References and Notes

    • 1a Kobashi T. Sakamaki D. Seki S. Angew. Chem. Int. Ed. 2016; 55: 8634
    • 1b Görner H. Mrozek T. Daub J. Chem. Eur. J. 2002; 8: 4008
    • 1c Hartzler HD. J. Org. Chem. 1966; 31: 2654
    • 2a Lamberth C. Jeanmart S. Luksch T. Plant A. Science 2013; 341: 742
    • 2b Schnyder A. Indolese AF. Maetzke T. Wenger J. Blaser H.-U. Synlett 2006; 3167
    • 3a Ledeboer MW. Pierce AC. Duffy JP. Gao H. Messersmith D. Salituro FG. Nanthakumar S. Come J. Zuccola HJ. Swenson L. Shlyakter D. Mahajan S. Hoock T. Fan B. Tsai WJ. Kolaczkowski E. Carrier S. Hogan JK. Zessis R. Pazhanisamy S. Bennani YL. Bioorg. Med. Chem. Lett. 2009; 19: 6529
    • 3b Meyers MJ. Sun J. Carlson KE. Marriner GA. Benita S. Katzenellenbogen BS. Katzenellenbogen JA. J. Med. Chem. 2001; 44: 4230
    • 4a Cristau HJ. Cellier PP. Spindler JF. Taillefer M. Chem. Eur. J. 2004; 10: 5607
    • 4b Gao C. Tao X. Qian Y. Huang J. Chem. Commun. 2003; 1444
    • 4c Cristau HJ. Vogel R. Taillefer M. Gadras A. Tetrahedron Lett. 2000; 41: 8457
    • 4d Todorovic N. Awuah E. Albu S. Ozimok C. Capretta A. Org. Lett. 2011; 13: 6180
    • 4e Ciufolini MA. Qi H.-B. Browne ME. J. Org. Chem. 1988; 53: 4151
  • 5 Meng C. Miculka C. Soll M. Paulini R. Pohlman M. Sorgel S. Bastiaanns HM. M. Thompson S. Ebuenga DC. Malveda UA. Suiza CR. Palmer C. Hokama T. WO 2015161224, 2015
  • 6 Qian X. Han J. Wang L. Adv. Synth. Catal. 2016; 358: 940
    • 7a Chai Z. Wang B. Chen J.-N. Yang G. Adv. Synth. Catal. 2014; 356: 2714
    • 7b Monastyrskyi A. Namelikonda NK. Manetsch R. J. Org. Chem. 2015; 80: 2513
    • 7c Dey C. Lindstedt E. Oloffson B. Org. Lett. 2015; 17: 4554
    • 8a Guo F. Wang L. Wang P. Yu J. Han J. Asian J. Org. Chem. 2012; 1: 218
    • 8b Mao S. Geng X. Yang Y. Qian X. Wu S. Han J. Wang L. RSC Adv. 2015; 5: 36390
    • 8c Zhang Y. Han J. Liu Z. -J. Synlett 2015; 26: 2593
    • 8d Qian X. Han J. Wang L. RSC Adv. 2016; 6: 89234
    • 8e Yang Y. Wu X. Han J. Mao S. Qian X. Wang L. Eur. J. Org. Chem. 2014; 6854
  • 9 Li M.-B. Li H. Wang J. Liu C.-R. Tian S.-K. Chem. Commun. 2013; 49: 8190
    • 10a Beaulieu S. Legault CY. Chem. Eur. J. 2015; 21: 11206
    • 10b Norrby P-O. Petersen TB. Bielawski M. Olofsson B. Chem. Eur. J. 2010; 16: 8251
  • 11 General Procedure for the Synthesis of 3 and 4 An oven-dried Schlenk tube was charged with 2-substituted malononitriles (0.5 mmol, 1 equiv), the tube was evacuated and charged with nitrogen, then 2 mL anhydrous DCM and t-BuOK (61.7 mg, 0.55 mmol, 1.1 equiv) were added, and the mixture was stirred at 0 °C for 5 min. The solution of diaryliodonium salts (0.55 mmol, 1.1 equiv) in 2 mL anhydrous DCM was added through a syringe subsequently for 5 min. The reaction was stirred for another 1 h, and the reaction temperature was elevated to r.t. The reaction mixture was quenched with 20 mL water, then the mixture was extracted with EtOAc (3 × 10 mL). The combined extracts were washed with brine, dried over Na2SO4, and filtered. After the solvent was removed under vacuum, and the residue was purified by flash chromatography to give the desired product. Analytical data for representative sample 3a is provided below. 2-Ethyl-2-phenylmalononitrile (3a) 81.7 mg (96% yield), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.58–7.53 (m, 2 H), 7.52–7.45 (m, 3 H), 2.29 (q, J = 7.4 Hz, 2 H), 1.23 (t, J = 7.4 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 132.0, 129.9, 129.7, 125.8, 115.0, 43.2, 36.6, 10.0. HRMS (EI): m/z calcd for C11H10N2 [M]+: 170.0844; found: 170.0843.